

AD-A245 569

RSSP- A FORTRAN SIMULATION PACKAGE FOR USE IN TEACHING RESPONSE SURFACE METHODOLOGY

James T. Treharne

A Thesis

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Master of Science

This document has been expressed for public release and release and distribution is to limited.

Auburn, Alabama

June 12, 1991

RSSP- A FORTRAN SIMULATION PACKAGE

FOR USE IN TEACHING RESPONSE

SURFACE METHODOLOGY

James T. Treharne

Accesion For	
NTIS CRASI DTIC TAB	N L
Unannomized Justification	
By	

Dist	
A	

Certificate of Approval:

Bruce E. Herring, Co-Chair

Professor

Industrial Engineering

James N. Hool

Professor

Industrial Engineering

Saeed Maghsoodloo, Co-Chair Professor

Industrial Engineering

Norman J Doorenbos

Dean

Graduate School

Style	man	ual	or	journal	used	IE	TRANSACTIONS	
Comput	er	soft	war	e used	W	ord	Perfect 5.1	

RSSP- A FORTRAN SIMULATION PACKAGE FOR USE IN TEACHING RESPONSE SURFACE METHODOLOGY

James T. Treharne

A Thesis
Submitted to
the Graduate Faculty of
Auburn University
in Partial Fulfillment of the
Requirements for the
Degree of
Master of Science

Auburn, Alabama June 12, 1991

RSSP- A FORTRAN SIMULATION PACKAGE FOR USE IN TEACHING RESPONSE SURFACE METHODOLOGY

James T. Treharne

Permission is granted to Auburn University to make copies of this thesis at its discretion, upon the request of individuals or institutions and at their expense. The author reserves all publication rights.

James J Jeharne Signature of Author

April 9, 199

Copy sent to:

<u>Name</u>

<u>Date</u>

THESIS ABSTRACT

RSSP- A FORTRAN SIMULATION PACKAGE FOR USE IN TEACHING RESPONSE

SURFACE METHODOLOGY

James T. Treharne

Master of Science, June 12, 1991 (B.S., USMA, 1979)

105 Typed Pages

Directed by Saeed Maghsoodloo and Bruce E. Herring

The Response Surface Simulation Package (RSSP) consists of three Fortran programs that assist in the teaching of Response Surface Methodology. The programs operate on an IBM (or compatible) personal computer. The package helps bridge the gap between theory and practice which is often difficult to do in a classroom setting. The thesis details the background and objectives of the computer package and a review of Response Surface Methodology theory. The simulation package assumes the user has a sufficient background in experimental design, multiple linear regression, and analysis of variance. The thesis also includes the Fortran source code for the programs as well as detailed instructor and student manuals. Further,

sample outputs from the three programs are provided. A major objective of this work is to make the programs user friendly, for both the instructor and student. This allows the student to gain a great deal of knowledge about practical experimental design and Response Surface Methodology.

TABLE OF CONTENTS

List	Of Tablesviii
ı.	Background And Objectives1
II.	Review Of Response Surface Methodology4
III.	RSM Solution Methods9
IV.	RSSP Programming15
v.	Instructor Manual21
VI.	Student Manual40
Bibli	ography56
Appen	dices
A.	RSMSU.EXE Program Listing58
в.	RSM.EXE Program Listing65
c.	CRIT.EXE Program Listing82

LIST OF TABLES

1.	Analysis Of Variance With Two Ind. Variables13
2.	File- INSTR.DAT29
3.	Sample Output From RSMSU.EXE31
4.	RSM Output (First-Order Model)34 (Instructor Manual)
5.	RSM Output (Second-Order Model)35 (Instructor Manual)
6.	CRIT Output (Optimal Value)
7.	CRIT Output (Contour Data)38 (Instructor Manual)
8.	RSM Output (First-Order Model)49 (Student Manual)
9.	RSM Output (Second-Order Model)50 (Student Manual)
10.	CRIT Output (Optimal Value)53 (Student Manual)
11.	CRIT Output (Contour Data)54 (Student Manual)

I. BACKGROUND AND OBJECTIVES

Auburn University's Industrial Engineering department has offered for many years a series of three progressive graduate courses in the design and analysis of experiments. In the third course, IE 632, Response Surface Methodology (RSM) is a primary topic of study. In the early 1970's it was recognized that there was a strong need to give the students the opportunity to apply their knowledge of RSM to a relatively simple, yet realistic problem. Jesse L. Martin, an Auburn graduate student at that time, developed a computer program package called RSAP- Response Surface Analysis Program [3]. RSAP enabled the student to learn a great deal about the practical application of RSM without having to spend an excessive amount of time doing lengthy and repetitive computations. RSAP has proven to be a highly successful tool of reinforcing response surface methodology through a comprehensive practical exercise. The RSAP simulation program continues in use today at Auburn University.

RSAP allows the instructor to load the equations of at most 15 unique surfaces into the computer. The student is then required, without knowledge of the true surface equation, to use proper RSM techniques to arrive near the

optimum region, where the assigned surface is estimated by a second-order equation. The student also uses two supplementary programs to find the optimal point (either a maximum or a minimum) on the surface and to draw a series of response contours. The students analyze a surface with two independent variables although there is a capability to analyze as many as five independent variables. The students spend approximately one-half of the quarter investigating their surface. The students must have a thorough knowledge of statistical techniques taught in previous courses in order to complete their investigations.

With the advent of microcomputers in the 1980's, the RSAP program has become, in some respects, outdated. RSAP was designed for use on an IBM mainframe computer during the "punch card" days. Therefore, although RSAP retains its usefulness for instruction, it has become difficult to use by today's standards. The program continues to be run on a mainframe computer. Therefore, the department must expend resources to keep the program loaded on the computer as well as for processing time when the students conduct their investigations. An instructor is not likely to add or change the surface equations loaded on the computer due to the time and effort required to do so. Additionally, the student must go to a mainframe computer terminal to execute his experiments. Each time he executes an experiment, the student must pick up the results at a print

station. Therefore, the student may spend a considerable amount of time working on things that are not directly related to RSM. Further, RSAP has no interactive capability and the instructor and student manuals were written nearly twenty years ago. Therefore, the system has grown to be more and more user unfriendly compared to what has become the norm with today's personal computers.

The major objective of this thesis is to develop a completely new version of RSAP which incorporates all the previous benefits while eliminating the current weaknesses. The Response Surface Simulation Package (RSSP) is a complete rework of Mr. Martin's original efforts. RSSP is also written in the Fortran programming language and uses RSAP as a framework. The new package is designed to be both interactive and user friendly. The instructor can easily add, change, or delete surfaces to be studied. instructor can continue to specify the size of the normal random errors that the simulator uses when calculating the response at various design points. The student can study the surface on any IBM compatible computer. The student can also print experimental results with equal ease. Additionally, the user manuals make the package very easy to use. The complete simulation package enables the student to complete the entire response surface methodology process with maximum learning benefit.

II. REVIEW OF RESPONSE SURFACE METHODOLOGY

The primary goal of Response Surface Methodology is to find the set of conditions which optimize a given response surface. The number of independent variables which may affect a response (dependent) variable range from one upward. The optimal response may be either a maximum or a minimum value. In most real world engineering applications, the experimenter has little idea about the exact relationship between the response variable and the independent variables. The experimenter may not even know which independent variables have a statistically significant impact on the response. Because of the infinite amount of possible arrangements between various variables, RSM was developed to find the optimal set of conditions as quickly and as cost efficiently as possible. RSM is an iterative technique that takes the experimenter from an arbitrary starting point to a local optimum. After finding the optimal set of conditions, the experimenter will have a much greater confidence about the expected output as well as the range of conditions which produce a desired level of output.

Formally, the experimenter desires to find the values for X_1, X_2, \ldots, X_p that maximize (or minimize) a response variable, Y.

$$Y=f(X_1,X_2,\ldots,X_p)$$

During experimentation, the response values at given points will vary because of experimental error. These errors are assumed normally distributed with a mean of zero. As mentioned, RSM is an iterative technique and may require many repetitions before the optimal conditions are found. The general steps are:

- Design a 1st-order experiment. The design must include a sufficient number of observation points to estimate the regression coefficients, the experimental error, and to test for goodness of fit. It should also use the proper spacing, which depends heavily on experimental error.
- Conduct first-order experiments.
- 3. Determine if a first-order model is adequate. If an adequate fit exists and at least one independent variable is significant, move along the path of steepest ascent (descent) to the next center point. If there is not a good fit, adjust the spacing until a satisfactory fit is obtained. If a good fit is impossible and the coefficients remain insignificant, it is time to try a second-order model. On the other hand, if there is a

good fit but no significant coefficients, the experimenter should increase the spacing. It is time to move to a second-order model when the experimenter can achieve a good fit but cannot achieve significant coefficients.

- 4. Design second-order experiments. There must be a sufficient number of observations as in the firstorder design.
- 5. Conduct the second-order experiments.
- 6. Determine if there is an adequate fit. If there is a good fit and the coefficients are significant, expand the spacing until the F(LOF) is 75% of the critical F value. If there is not a good fit, the experimenter must decrease the spacing. If the fit is adequate and there are no significant coefficients, the spacing must be increased.
- 7. Estimate the optimal value for the dependent variable and the values of the independent variables where the optimal occurs.
- 8. Map contours of the response variable.

Several points must be taken into consideration during the optimization process. First, the experimental design must be properly constructed in order to ensure that the formulas used to derive the analysis of variance results are correct. In the case of first-order experimentation,

the designs should be balanced. In the case of secondorder models, the designs should be rotatable. bibliography contains an excellent reference to study Response Surface Methodology and the design of experiments [4]. An additional source highlights an excellent strategy for progressing through the eight steps mentioned above [2]. Second, the correct spacing is critical during experimentation. Experience will help one select an initial spacing. If the spacing is too wide, it will be difficult to get an adequate least-squares fit. On the other hand, if the spacing is too narrow (relative to σ_{ϵ}), the resulting estimates of the coefficients may not be precise. However, the coefficients may appear to be insignificant because the experimental error is large relative to the size of the spacing. Third, the experimenter may have to conduct many iterations of firstorder experiments until the general area of the optimum is reached. The experimenter must be careful about selecting the size of moves that is made along the path of steepest ascent (descent). If the moves are too small, one will expend more money and time to reach the optimum. moves are too large, one may inadvertently bypass the optimal point. In summary, second-order experimentation is warranted when the first-order model no longer provides a good fit after appropriate spacing adjustment. At this point, the experimenter should be in the vicinity of the

optimum. The second-order model will require a different design than the first order. This is true because three levels of each variable must be examined in order to check for quadratic effects. At this point, the primary concern is to fit a second-order model over the largest possible area. This allows the experimenter to plot the response contours (if desired) over a large area.

III. RSM SOLUTION METHODS

Response Surface Methodology is a procedure used to find the mathematical relationship between a dependent variable, Y, and a number of independent variables— X_1, X_2, \ldots, X_p . The methodology provides a sequence to quickly establish that relationship. The mathematical techniques used in the methodology are quite common. Standard linear regression techniques are used to determine the relationship between the variables. A standard analysis of variance (ANOVA) table is then constructed to determine the statistical significance of the coefficients as well as the adequacy of the model being used.

CALCULATION OF REGRESSION COEFFICIENTS

The first step is to estimate the various regression coefficients in the first-order model. The model, in general, is:

$$Y=\beta_0+ \beta_1X_1+ \beta_2X_2+...+\beta_pX_p+ \epsilon$$
 ,

where ϵ represents the experimental error. This error is assumed to be normally distributed with a mean of zero. A simple regression problem with two independent variables is presented to illustrate the computation of the

coefficients. If there are "n" total observations, then the following two matrices are written:

$$m{Y}_{=}$$
 $egin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}$ $m{X}_{=}$ $m{X}_{=}$ $m{1}$ $m{X}_{11}$ $m{X}_{21} \\ 1$ $m{X}_{12}$ $m{X}_{22} \\ \vdots \\ 1$ $m{X}_{1n}$ $m{X}_{2n} \end{bmatrix}$

The left hand column of \mathbf{X} consists of the value of 1 only. These are dummy variables which are associated with β_o . The method of least squares is used to determine the coefficients. Therefore, the goal is to minimize the least squares function:

$$L = \sum_{j=1}^{n} (e_{j})^{2} = \sum_{j=1}^{n} (y_{j} - \mathcal{B}_{o} - \mathcal{B}_{1}X_{1} - \mathcal{B}_{2}X_{2})^{2}$$

In matrix notation the least squares function becomes:

$$L= \epsilon^{t} \star \epsilon = (Y-XB)^{t} \star (Y-XB) ,$$

where t stands for transpose. The next step is to take the partial derivatives of the least squares function with respect to each of the coefficients $(\beta_0, \beta_1, \beta_2)$. All three of the partial derivatives are then set equal to zero to obtain the normal equations. In matrix notation, these equations can be rearranged in the form of

$$(X^t*X)*B = X^t*Y.$$

This is equivalent to:

$$\begin{bmatrix} n & \sum X_1 & \sum X_2 \\ \sum X_1 & \sum (X_1)^2 & \sum X_1 X_2 \\ \sum X_2 & \sum X_1 X_2 & \sum (X_2)^2 \end{bmatrix} * \begin{bmatrix} \mathcal{B}_o \\ \mathcal{B}_1 \\ \mathcal{B}_2 \end{bmatrix} = \begin{bmatrix} \sum y \\ \sum X_1 y \\ \sum X_2 y \end{bmatrix}$$

If $A = X^t * X$ and $G = X^t * Y$, then the solution vector becomes:

$$\beta = A^{-1} * G$$

ANALYSIS OF VARIANCE

After the coefficients have been found, the next step is to conduct the analysis of variance. The purpose of this is twofold. First, it is necessary to determine if the coefficients are significant. Second, it is necessary to determine if the first (or second)-order model is satisfactory. The sum of the squares terms used in the analysis of variance are calculated in the following manner.

- 1. Uncorrected $SS(Total) = \Sigma(y_i^2)$. This is the value of all "n" observations squared.
- 2. $SS(\beta_0) = (\Sigma y_i)^2/n$. This is commonly referred to as the correction factor.
- 3. $SS(\beta_1) = (\beta_1)^2/(A_{22})^{-1}$. This is the sum of squares due to β_1 after assuming that the other variables are in the model. In other words, it is the net contribution to the regression sum of the squares.
- 4. $SS(B_2) = (B_2)^2/(A_{33})^{-1}$. Same as in previous step.

- 5. SS(Residual) = SS(Total) -SS(β_0) -SS(β_1) -SS(β_2). The residual sum of the squares accounts for experimental error and error due to the inadequacy of the model.
- 6. SS(Pure Error)= $\Sigma_k(\Sigma_i y_{ik}^2 (\Sigma_i y_{ik})^2/h_k)$; where $i=1,2,\ldots,h$. There are "k" distinct design points and "h_k" observations at the kth design point. This sum of the squares is due to the experimental error when conducting multiple repetitions at a point. In order to conduct F-tests, SS(Error) should have at least five degrees of freedom.
- 7. SS(Lack of Fit) = SS(Residual) SS(Pure Error)
 This error accounts for the inadequacy of the model.

After the above SS's are calculated, the ANOVA table is constructed and the appropriate F-tests made. The procedures for finding the regression coefficients and analysis of variance table for a second-order model closely parallel the method for the first-order model. The second-order model is:

Y= β_0 + β_1 X₁+ β_2 X₂+ β_{11} X₁²+ β_{22} X₂²+ β_{12} X₁X₂+ ϵ Although the experimental design must provide sufficient df to evaluate the quadratic effects, the solution procedure is the same. The analysis of variance table for a first-order model with two independent variables is shown in Table 1.

SOURCE	DF	SS	MS	F-RATIO
TOTAL	n	SS(T)	SS(T)/n	
B _O	1	SS(B _o)	SS(B _{o)}	MS(B _o)/MSE
B ₁	1	SS(B ₁)	SS(B ₁)	MS(B ₁)/MSE
B ₂	1	SS(B ₂)	SS(B ₂)	MS(B ₂)/MSE
RESIDUAL	n-3	SS (RES)	SS(RES)/	MS(RES)/MSE
			DF (RES)	
LACK OF	(n-3)-	SS(LOF)	SS(LOF)/	MS(LOF)/MSE
FIT	$\Sigma(h_k-1)$	_	DF(LOF)	
EXPERI-	Σ(h _K -1)	SS (EE)	SS(EE)/	
MENTAL			DF(EE)	
ERROR				

Table 1. Analysis of Variance with Two Ind. Variables

DETERMINATION OF CRITICAL VALUES

After a second-order model has been found that best fits the surface, the experimenter must determine the optimal response and the point at which it occurs. The procedure is quite simple. Again, the second-order model is:

$$Y = B_0 + B_1 X_1 + B_2 X_2 + B_{11} X_1^2 + B_{22} X_2^2 + B_{12} X_1 X_2 + \epsilon$$

The optimum occurs at the point where the partial derivative with respect to each independent variable is equal to zero. In this case:

$$\frac{\partial Y}{\partial X_1} = \mathcal{B}_1 + 2\mathcal{B}_{11}X_1 + \mathcal{B}_{12}X_2 = 0$$

$$\frac{\partial y}{\partial X_2} = \mathcal{B}_2 + 2\mathcal{B}_{22}X_2 + \mathcal{B}_{12}X_1 = 0$$

In matrix form:

$$\begin{bmatrix} 2\mathcal{B}_{11} & \mathcal{B}_{12} \\ \mathcal{B}_{12} & 2\mathcal{B}_{22} \end{bmatrix} * \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} -\mathcal{B}_1 \\ -\mathcal{B}_2 \end{bmatrix}$$

Clearly, the optimal point is obtained from:

$$\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} 2\mathcal{B}_{11} & \mathcal{B}_{12} \\ \mathcal{B}_{12} & 2\mathcal{B}_{22} \end{bmatrix}^{-1} * \begin{bmatrix} -\mathcal{B}_1 \\ -\mathcal{B}_2 \end{bmatrix}.$$

The values of X_1 and X_2 are substituted back into the model. Then the optimal value of the response variable is estimated. This is normally a maximum or minimum value. However, it can also be a saddle point. Therefore, in order to determine the exact nature of the optima, one must conduct a canonical analysis [4].

IV. RSSP PROGRAMMING

The Response Surface Simulation Package consists of three executable Fortran programs. The first program, RSMSU.EXE, is used by the instructor to set up a data file for student use. Prior to running this program, the instructor must have previously constructed a data file entitled INSTR.DAT. The second program, RSM.EXE, is the primary program in the simulation. This program produces the simulated response values for each experiment as well as the resulting ANOVA table. The final program, CRIT.EXE, is used to calculate the optimal conditions of the secondorder equation, to estimate the optimal value of the dependent variable, and to provide data to map response contours. These programs use RSAP as a general framework. In some segments there is a close parallel to RSAP while in other segments there is no resemblance at all.

This chapter discusses the programming logic in each of the three executable Fortran programs. First, one must understand the capabilities of the simulation package.

 The simulation package is designed to accommodate at most five independent variables. It is recommended that most introductory courses in RSM, at least initially, use only two independent variables.

- 2. The instructor may provide data for at most fifteen different response surfaces. This normally enables each student to experiment with a unique surface.
- 3. The experimental error is assumed normally distributed with a mean equal to zero. The instructor must specify the size of the error variance.
- 4. The maximum number of observations is restricted to sixty. That is to say, the degrees of freedom for the corrected total SS's cannot exceed 59.

 This number is sufficient for almost any practical situation because an experimenter should always design an experiment that minimizes cost while providing the necessary degrees of freedom.
- 5. Each surface that the instructor inputs is represented by a second-order equation. Some coefficients may be set equal to zero. Its general form is

$$Y = \mathcal{B}_o + \sum_{i=1}^5 \mathcal{B}_{ii} X_i^2 + \sum_{i=1}^4 \sum_{j=i+1}^5 \mathcal{B}_{ij} X_i X_j + \sum_{i=1}^5 \mathcal{B}_i X_i.$$

6. The student is responsible for preparing a proper experimental design. Failure to do so may provide

invalid results. For example, if the student uses an unbalanced design, the equations used to calculate the various sum of the squares terms are invalid.

RSMSU. EXE

This program reads an instructor prepared data file (INSTR.DAT). This file contains all the vital data for at most fifteen response surfaces. The program then uses this data file to create an encoded data file (STU.DAT). The student uses STU.DAT when he executes the main program. This program is used to ensure that the student does not have access to the uncoded surface data in the INSTR.DAT. Prior to executing this setup program, the instructor must use a text editor to create an ASCII file called INSTR.DAT. Each surface contains the following six lines of information.

- 1. Coefficients of the second-order terms, β_{ii} .
- 2. Coefficients of the interaction terms, β_{ij} .
- 3. Coefficients of the first-order terms, β_i .
- 4. Constant term, β_0 .
- 5. Experimental error variance.
- Center point for the first set of experiments.

RSMSU.EXE first reads and stores the data from INSTR.DAT. The program then encodes the data by adding a constant to each coefficient and then multiplying by another constant. Different pairs of constants are used

for each line of coefficients. The encoded file is then read back by the computer. The file is decoded, and the decoded data is displayed on the computer screen. This gives the instructor the opportunity to verify the contents of STU.DAT. The instructor may also receive a printed copy of the surface data. Each time the instructor executes this program, STU.DAT is erased and then reconstructed.

RSM. EXE

RSM. EXE is the primary program in the simulation package. This program begins by reading the encoded data from STU.DAT. It then decodes the data and prompts the user for his surface number, the number of independent variables, the number of distinct design points, and the order of the model being used. The program then prompts the user for the number of repetitions at each point as well as the location of each point. The program summarizes this data on the computer screen so that the student may verify the input. If there is an input error, the student must reenter all data. Once this is complete, the program generates a response value for each observation in the experiment. A random number generator is used to calculate the experimental error at each design point. This error is based on the given error variance in the surface data. error range is restricted to within four standard deviations of the mean (or zero). Next, the program internally rearranges the data in order to make the

regression and ANOVA calculations. These calculations are made using the regression and analysis of variance techniques described in the previous chapter. The program produces three blocks of information. First, it prints the rearranged input data. This includes the value of the response variable, design point number, and the values of the independent variables. Second, the program prints a standard ANOVA table which includes the regression coefficients and the necessary F statistics to conduct the significance of coefficients and goodness of fit tests. Third, the program prints a table with generated responses, the forecasted responses (from the regression equation), their difference, and their differences squared. of the squared differences is also equal to the residual sum of the squares in the ANOVA table. Finally, the program enables the student to obtain a hard copy of the results and to begin another set of experiments.

CRIT.FOR

The final program is executed after an adequate secondorder model has been found. The student is prompted to
input the coefficients of his second-order model. The
student then verifies the equation by reviewing it on the
computer screen. The program calculates the first partial
derivative with respect to each independent variable and
sets them equal to zero. These equations are then solved
by matrix algebra techniques. The program displays and

prints the value of the independent variables and the response variable at the optimal point. The student then has the option to let the program generate data to map the response contours. The student inputs the y value of the contour, as well as the maximum, minimum, and incremental values for each independent variable. The increment (delta) will dictate how many y values are generated. example, assume that the minimum and maximum values for X_1 are 1.0 and 2.0 respectively. If the delta value is .2 for X_1 , then responses will be generated for X_1 equal to 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0. The program calculates the response variable at all points (incremented by delta) between the stated ranges of the independent variables. the response value is within .01 units of the interested contour, the values for the response variable and the independent variables are displayed. The student can increase the size of the output by decreasing delta or extending the range between the minimum and maximum values for each variable of interest. Trial and error may be necessary when specifying the parameters used to calculate the responses in order to get a reasonable amount of data points to plot the contours. The program allows the student to continue to plot as many contours as he desires.

V. INSTRUCTOR MANUAL

RSSP- A FORTRAM SIMULATION PACKAGE FOR USE IN TEACHING RESPONSE SURFACE METHODOLOGY

INSTRUCTOR MANUAL

OVERVIEW

This manual explains how to use the Response Surface Simulation Package (RSSP). This package is used in the instruction of Response Surface Methodology (RSM). It was developed by James T. Treharne, an Industrial Engineering graduate student at Auburn University. The programs operate on an IBM (or compatible) personal computer. The simulation is a complete revision of a similar set of programs called Response Surface Analysis Program (RSAP). Jesse Martin, a former Auburn University graduate student, developed RSAP in the early 1970's. RSSP enables an instructor to test a student's knowledge of Response Surface Methodology by giving him a simple, yet realistic RSM problem to solve. Additionally, an instructor can use RSSP to generate examples to reinforce the theoretical concepts taught in the classroom.

RSSP is designed for use in graduate level engineering courses that teach RSM. RSM techniques are thoroughly discussed by Montgomery [2]. A student should have an understanding of multiple regression, experimental design, and analysis of variance. The package has sufficient capabilities and flexibility to meet most teaching needs. RSSP allows the instructor to load the equations of at most 15 unique surfaces into the computer. The student is then required, without knowledge of the true surface equation, to use proper RSM techniques to arrive near the optimum

region, where the assigned surface is estimated by a second-order model. The student can also find the estimated optimal point and obtain data to plot estimated response contours. The simulation package has the following capabilities:

- 1. The simulation package is designed to accommodate at most five independent variables. It is recommended that most introductory courses in RSM, at least initially, use only two independent variables.
- 2. The instructor may provide data for at most fifteen different response surfaces. This normally enables each student to experiment with a unique surface.
- 3. The experimental error is assumed normally distributed with a mean equal to zero. The instructor must specify the size of the error variance.
- 4. The maximum number of observations is restricted to sixty. That is to say, the degrees of freedom for the corrected total SS's cannot exceed 59.

 This number is sufficient for almost any practical situation because an experimenter should always design an experiment that minimizes cost while providing the necessary amount of degrees of

freedom to estimate the coefficients and error variance.

5. Each surface that the instructor inputs is represented by a second-order equation, where some of the coefficients may be set to zero. Its general form is

$$Y = \mathcal{B}_o + \sum_{i=1}^5 \mathcal{B}_{ii} X_i^2 + \sum_{i=1}^4 \sum_{j=i+1}^5 \mathcal{B}_{ij} X_i X_j + \sum_{i=1}^5 \mathcal{B}_i X_i.$$

6. The student is responsible for preparing a proper experimental design. Failure to do so may provide invalid results. For example, if he uses an unbalanced design, the equations used to calculate the various sum of the squares terms are invalid.

REVIEW OF RSM

The primary goal of RSM is to find the set of conditions which optimize a given response surface. RSM is an iterative approach that finds the optimal set of conditions as quickly and as efficiently as possible. The general steps are:

 Design a 1st-order experiment. The design must include a sufficient number of observation points to estimate the regression coefficients, the experimental error, and to test for goodness of

- fit. The test should also use the proper spacing, which depends heavily on experimental error.
- 2. Conduct first-order experiments.
- Determine if a first-order model is adequate. If 3. an adequate fit exists and at least one independent variable is significant, move along the path of steepest ascent (descent) to the next center point. If there is not a good fit, adjust the spacing until a satisfactory fit is obtained. If a good fit is impossible and the coefficients remain insignificant, it is time to try a secondorder model. On the other hand, if there is a good fit but no significant coefficients, the experimenter should increase the spacing. time to move to a second-order model when the experimenter can achieve a good fit but cannot achieve significant coefficients.
- 4. Design a second-order experiment. There must be a sufficient number of observations as in the firstorder design.
- 5. Conduct the second-order experiments.
- 6. From the ANOVA table determine if there is an adequate fit. If there is a good fit and the coefficients are significant, expand the spacing until the F(LOF) is 75% of the critical F value.

 If there is not a good fit, the experimenter must

decrease the spacing. If the fit is adequate and there are no significant coefficients, the spacing must be increased.

- 7. Estimate the optimal value for the dependent variable and the values of the independent variables where the optimum occurs.
- 8. Map contours of the response variable.

 An additional source highlights an excellent strategy for progressing through the above steps [1].

RSSP PROGRAMMING

RSSP consists of three executable Fortran programs:
RSMSU.EXE, RSM.EXE, and CRIT.EXE. The instructor uses all three of the programs. Meanwhile, the student uses only RSM.EXE and CRIT.EXE. The package also uses two data files. The first data file, INSTR.DAT, contains the data for the surfaces. The student should not be given a copy of this file. The second file, STU.DAT, is created by the instructor with RSMSU.EXE. This data file contains an encoded copy of the surface data. A detailed explanation of the three programs follows.

RSMSU. EXE

This program reads an instructor prepared data file (INSTR.DAT). This file contains all the vital data for at most fifteen response surfaces. The program then uses this data file to create an encoded data file (STU.DAT). The

student uses STU.DAT when he executes the main program.

This program is used to ensure that the student does not have access to the uncoded surface data in INSTR.DAT.

Prior to executing this setup program, the instructor must use a text editor to create an ASCII file called INSTR.DAT.

Each surface contains the following six lines of information.

1. Coefficients of the second-order terms, β_{ii} .

$$(\beta_{11},\ \beta_{22},\ \beta_{33},\ \beta_{44},\ \beta_{55})$$

- 2. Coefficients of the interaction terms, β_{ij} .
 (β_{12} , β_{13} , β_{14} , β_{15} , β_{23} , β_{24} , β_{25} , β_{34} , β_{35} , β_{45})
- 3. Coefficients of the first-order terms, β_i .

$$(\beta_1, \beta_2, \beta_3, \beta_4, \beta_5)$$

- 4. Constant term, β_0 .
- 5. Experimental error variance, σ_{ϵ}^{2} .
- 6. Center point for the first set of experiments.

$$(X_1, X_2, X_3, X_4, X_5)$$

Each line must contain a value for every coefficient associated with the variables, even if it is zero. Values should be separated by a space or a comma. Do not combine lines together. RSMSU.EXE first reads and stores the data from INSTR.DAT. The program then encodes the data by adding a constant to each coefficient and then multiplying by another constant. Different pairs of constants are used for each line of coefficients. The encoded file is then read back by the computer. The file is decoded, and the

decoded data is displayed on the computer screen. This gives the instructor the opportunity to verify the contents of STU.DAT. The instructor may also receive a printed copy of the surface data. Each time the instructor executes this program, STU.DAT is erased and then reconstructed. Table 2 contains a copy of INSTR.DAT that contains data for three surfaces.

```
-2, -47, 0, 0, 0
10,0,0,0,0,0,0,0,0,0
8,14,0,0,0
81
.05
-4,8,0,0,0
-16, -2, 0, 0, 0
8,0,0,0,0,0,0,0,0,0
-14,47,0,0,0
83
.025
-1,11,0,0,0
11,7,0,0,0
-8,0,0,0,0,0,0,0,0,0
-3, -18, 0, 0, 0
-16
.05
8,-4,0,0,0
```

Table 2. File- INSTR.DAT

The equation for surface number one from Table 2 is: $Y = -2X_1^2 - 47X_2^2 + 10X_1X_2 + 8X_1 + 14X_2 + 81$.

The experimental error variance is equal to .05. The starting point for the first set of experiments is $X_1 = -4$ and $X_2 = 8$. The program is executed by typing "RSMSU." The program prompts the instructor for all the necessary

information. The following information pertains to the requested input.

- 1. NAME- Enter up to 25 characters.
- 2. DATE- Enter in any format up to 25 characters.
- 3. Number of Surfaces- An error will occur if one inputs a number greater than the number of surfaces in INSTR.DAT. If a number is input that is less than the number of surfaces in INSTR.DAT, the data on the additional surfaces will not be used.
- 4. The program will display the data on each surface to allow verification by the instructor. If an error is found, it will be necessary to revise INSTR.DAT and execute the program again.
- of the surface data which has been written to STU.DAT. Table 3 shows this output after using RSMSU with the data file from Table 2.

		RSM	I- CONTE	NTS OF	FILE ST	ru.DAT					
PR	EPARED	BY: Joh	n Smith								
DA	TE PREP	ARFD: F	ebruary	12 1	001						
			55. 55. 7	,	,,,						
					x xxx.xx	(XXX.XX	кхх. хх	xxx.x	XX.XX		
811 812	822 813	В 33 В14	844 815	855	02/	0.25	07/	075	0/5		
81	B13 B2	83	B13	623 65	B24	B25	B34	B35	845		
Bo	D&	63	D*	62							
EVAR											
X1	X2	х3	X4	X5	(START)	NG POINT	Γ)				
	NUMBI	ER OF S	URFACES	TO BE	WRITTEN	10 STU	DAT =	3			
			SURF	ACE NUI	MBER 1						
	2.000	-47.	000	.00	00	.000		.000			
	0.000		000	.0		.000		.000	.000	.000	.00
•	.000	_	000	.0	00	.000		.000	.000	.000	.00
1	3.000		000	.00	00	.000		.000			
8	1.000										
	.050										
	4.000	8.	000	.00	00	.000		.000			
			SURF	ACE NUI	MBER 2						
-10	5.000	-2	000	.00	กก	.000		.000			
	3.000		000	.00		.000		.000	.000	.000	.000
	.000		000	•						.000	.00
- 14	. 100	47.	000	.00	00	.000		.000			
83	5.CJO										
	.025										
-	.000	11.	000	.00	00	.000		.000			
			SURFA	CE NU	1BER 3						
11	.000	7.0	000	.00	00	.000		.000			
	3.000		000	.00		.000		.000	.000	.000	.000
	.000	_	000								
	.000	-18.0	000	.00	00	.000		.000			
- 16	.000										
	.050					_					
8	3.000	-4.0	000	.00	00	.000		.000			

Table 3. Sample Output from RSMSU.EXE

RSM. EXE

RSM.EXE is the primary program in the simulation package. This program begins by reading the encoded data from STU.DAT. It then decodes the data and prompts the

user for the surface number, the number of independent variables, the number of distinct design points, and the order of the model being used. The program then prompts the user for the number of repetitions at each point as well as the location of each point. The program summarizes this data on the computer screen so that the student may verify the input. If there is an input error, the student must reenter the data. Once this is complete, the program generates a response value for each observation in the experiment. A random number generator is used to calculate the experimental error at each design point. This error is based on the given error variance in the surface data. The error range is restricted to within four standard deviations of the mean (or zero). The program produces three blocks of information. First, it prints the rearranged input data. This includes the value of the response variable, design point number, and the values of the independent variables. Second, the program prints a standard ANOVA table which includes the regression coefficients and the necessary F statistics to conduct the significance and goodness of fit tests. Third, the program prints a table with generated responses, the forecasted responses (from the regression equation), their difference, and their differences squared. The sum of the squared differences is also equal to the residual sum of the squares in the ANOVA table. Finally, the program enables

the student to obtain a hard copy of the results and to begin another set of experiments. The following points pertain to the execution of this program.

- 1. NAME- Enter up to 25 characters.
- Surface Number- Each student is assigned his own surface number.
- 3. Independent Variables- Maximum of five.
 Instructor must inform the student of this number.
- 4. First Design Point- The instructor can include an initial starting point in STU.DAT. This is the center of the initial set of first-order experiments.
- 5. The program will summarize the data input. If an error was made during input, the data must be reentered. The values are printed with a precision of four decimal places.

An example output is shown in Table 4. This is a first-order experiment. The surface equation used is $Y = -2X_1^2 - 47X_2^2 + 10X_1X_2 + 8X_1 + 14X_2 + 81.$

An example output of a second-order experiment using the same surface is shown in Table 5.

```
NAME: John Smith
 SURFACE NUMBER: 1
            ----REARRANGED INPUT DATA----
                                       8.1000
                           -4.1000
-3287.54690485 1 1.0000
-3287.71885476 1 1.0000
                           -4.1000
                                        8.1000
-3266.15657484 2 1.0000
                           -3.9000
                                        8.1000
                                        8.1000
-3266.93096281 2 1.0000
                           -3.9000
-3111.37012416 3 1.0000
                           -3.9000
                                        7.9000
                                       7.9000
-3111.27798916 3 1.0000
                           -3.9000
-3131.89380354 4 1.0000
                           -4.1000
                                        7.9000
                                       7.9000
-3131.96614320 4 1.0000
                           -4.1000
-3198.67868754 5 1.0000
                           -4.0000
                                        8.0000
                           -4.0000
                                        8.0000
-3198.81958978 5 1.0000
                                        8.0000
                           -4.0000
-3198.96933382 5 1.0000
                   ANALYSIS OF VARIANCE TABLE
SOURCE
              DF
                                                     F-RATIO
                                                                  COEFFICIENT
                   .1126337E+09
TOTAL
              11
                                  .1023943E+08
                                  .1125845E+09
                                                  .1857149E+10
                                                                  .3436183E+04
DUE TO Bo
                   .1125845E+09
               1
                                                                 .1042377E+03
                                   .8692377E+03
                                                  .1433860E+05
DUE TO 81
               1
                   .8692377E+03
                                                  .7973386E+06 -.7773054E+03
DUE TO B2
                   .4833644E+05
                                   .4833644E+05
               8 .1104840E+01
2 .7411063E+00
                                   .1381050E+00
RESIDUAL
               8
 LACK OF FIT
                                   .3705531E+00
                                                  .6112496E+01
                6 .3637334E+00
                                  .6062223E-01
 ERROR
                                                            DIFF SQUARED
  POINT GENERATED
                           FORECASTED
                                            DIFFERENCE
                                          -.1807180E+00
                                                           .3265899E-01
         -.3287547E+04
                         -.3287366E+04
                                                           .1243746E+00
                                          -.3526679E+00
   1
         -.3287719E+04
                         -.3287366E+04
         -.3266157E+04
                         -.3266519E+04
                                          .3620982E+00
                                                           .1311151E+00
                                                           .1699829E+00
                                          -.4122898E+00
         -.3266931E+04
                         -.3266519E+04
         -.3111370E+04
                         -.3111057E+04
                                          -.3127611E+00
                                                           .9781952E-01
   3
        -.3111278E+04
                         -.3111057E+04
                                          -_2206261E+00
                                                           .4867589E-01
                                                           .1226188E-03
                                           .1107334E-01
         -.3131894E+04
                         -.3131905E+04
         -.3131966E+04
                         -.3131905E+04
                                          -.6126632E-01
                                                           .3753563E-02
                                           .5329021E+00
         -.3198679E+04
                         -.3199212E+04
                                                           .2839846E+00
   5
         -.3198820E+04
                         -.3199212E+04
                                           .3919998E+00
                                                           .1536639E+00
                                           .2422558E+00
                                                           .5868787E-01
         -.3198969E+04
                         -.3199212E+04
                            SUM OF SQUARED DIFFERENCES=
                                                           .1104840E+01
```

Table 4. RSM Output (First-Order Model)

NAME:John Si	ni th						
SURFACE NUME	BER:	1					
	R	EARRANGE	D INPUT	DATA			
-28.1493435	8 1 1	.0000	.882	0 1.8250	.7779	3.3306	1.6097
-28.3212934	9 1 1	.0000	.882	0 1.8250	.7779	3.3306	1.6097
20.1826054	6 2 1	.0000	3.682	0 1.8250	13.5571	3.3306	6.7197
19.4082174	9 2 1	.0000	3.682	0 1.8250	13.5571	3.3306	6.7197
-10.8671662	28 3 1	.0000	3.682	09750	13.5571	.9506	-3.5900
-10.7750312	28 3 1	.0000	3.682	09750	13.5571	.9506	-3.5900
19.6675341	11 4 1	.0000	.882		.7779	.9506	8600
19.5951944	5 4 1	.0000	.882		.7779	.9506	8600
97.3823899	55 5 1	.0000	2.782	0 .4250	7.7395	.1806	1.1824
97.2414873	S2 5 1	.0000	2.782	0 .4250	7.7395	. 1806	1.1824
87.0293828	461	.0000	.802	0 .4250	.6432	. 1806	.3409
87.0054394	2 6 1	.0000	.802	0 .4250	.6432	.1806	.3409
-83.4169325	3 7 1	.0000	2.782	0 2.4050	7.7395	5.7840	6.6907
-83.7311687	72 7 1	.0000	2.782	0 2.4050	7.7395	5.7840	6.6907
91.5250490	0 8 1	.0000	4.762	0 .4250	22.6766	.1806	2.0239
91.3926998	9 8 1	.0000	4.762	0 .4250	22.6766	. 1806	2.0239
-90.8600668	2 9 1	.0000	2.782	0 -1.5550	7.7395	2.4180	-4.3260
-90.8200695	7 9 1	.0000	2.782	0 -1.5550	7.7395	2.4180	-4.3260
		ANALYSI	S OF VA	RIANCE TABLE			
SOURCE	DF	ss	:	MS	F-RATIO	COEF	FICIENT
TOTAL	18	.846693	6E+05	.4703854E+04			
DUE TO BO	1	.230043	0E+04	.2300430E+04	.5300174E+05	.8098	821E+02
DUE TO B1	1	.767606	8E+02	.7676068E+02	.1768560E+04	.8184	773E+01
DUE TO B2	1	.767816	3E+03	.7678163E+03	.1769043E+05	.1404	660E+02
DUE TO 811	1	.124953	4E+03	.1249534E+03	.2878916E+04	2036	395E+01
DUE TO B22	1	.551699	2E+05	.5516992E+05	.1271111E+07	74704	576E+02
DUE TO 812	1	.326916	7E+04	.3269167E+04	.7532136E+05	.9999	812E+01
RESIDUAL	12	.522168	1E+00	.4351401E-01		,	
		474514		/70/700F 04	.1010238E+01		
LACK OF FIT	• 3	. 131541	YE+UU	.4384729E-01	. 1010/230270	ı	

Table 5. RSM Output (Second-Order Model)

POINT	GENERATED	FORECASTED	DIFFERENCE	DIFF SQUARED
1	2814934E+02	2833752E+02	.1881797E+00	.3541162E-01
1	2832129E+02	2833752E+02	.1622984E-01	.2634077E-03
2	.2018261E+02	.1965539E+02	.5272192E+00	.2779600E+00
2	.1940822E+02	.1965539E+02	2471688E+00	.6109242E-01
2 2 3 3	1086717E+02	1080025E+02	6691577E-01	.4477720E-02
3	1077503E+02	1080025E+02	.2521924E-01	.6360098E-03
4	.1966753E+02	.1960536E+02	.6217143E-01	.3865286E-02
4	.1959519E+02	.1960536E+02	1016823E-01	.1033930E-03
5	.9738239E+02	.9729296E+02	.8942575E-01	.7996964E-02
4 5 5	.9724149E+02	.9729296E+02	5147649E-01	.2649829E-02
6	.8702938E+02	.8712318E+02	9379525E-01	.8797548E-02
6	.8700544E+02	.8712318E+02	1177387E+00	.1386239E-01
6 7	8341693E+02	8342840E+02	.1146360E-01	.1314141E-03
7	8373117E+02	8342840E+02	3027726E+00	.9167125E-01
8	.9152505E+02	.9149579E+02	.2926262E-01	.8563008E-03
8	.9139270E+02	.9149579E+02	1030865E+00	.1062682E-01
9	9086007E+02	9086204E+02	.1976831E-02	.3907862E-05
9	9082007E+02	9086204E+02	.4197408E-01	.1761824E-02
		SUM OF SQUA	RED DIFFERENCES=	.5221681E+00

Table 5 (Continued). RSM Output (Second-order Model)

CRIT. EXE

The final program is executed after an adequate secondorder model has been found. The student is prompted to
input the coefficients of his second-order model. The
student then verifies the equation by reviewing it on the
computer screen. The program calculates the first partial
derivative with respect to each independent variable and
sets them equal to zero. These equations are then solved
simultaneously by matrix algebra techniques. The program
displays and prints the value of the independent variables
and the response variable at the optimal point. The
student then has the option to let the program compute data
to map response contours. The student inputs the y value

of the contour, as well as the maximum and minimum values for each independent variable. The student must also input an increment for each independent variable called delta. The delta values will dictate how many response values are generated. For example, assume that the minimum and maximum values for X_1 are 1.0 and 2.0 respectively. If the delta value is .2 for X_1 , then responses will be generated for X_1 equal to 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0. The program calculates the response variable at all points (incremented by delta) between the stated ranges of the independent variables. If the response value is within .01 units of the interested contour, the values for the response variable and the independent variables are displayed. The student can increase the size of the output by decreasing the delta or extending the range between the minimum and maximum values for each variable of interest. Trial and error may be necessary when specifying the parameters used to generate the responses in order to get a reasonable amount of data points to plot the contours. program allows the student to continue to plot as many contours as he desires. Table 6 shows the output from CRIT. EXE. This is the optimal point for the same surface as before. Table 7 shows the contour data output from CRIT.EXE.

```
CRITICAL ANALYSIS OF SURFACE

NAME: John Smith

SURFACE NUMBER= 1

SURFACE EQUATION IS:

Y= -2.000x1**2 + -47.000x2**2 + 10.000x1*x2 + 8.000x1

+ 14.000x2 + 81.000

--VALUE OF INDEPENDENT VARIABLES AT OPTIMAL POINT--

X 1= 3.231884

X 2= .492754

--VALUE OF RESPONSE VARIABLE AT OPTIMAL POINT--

Y= 97.376812
```

Table 6. CRIT Output (Optimal Value)

VALUES	[+/01] To	D PLOT CONTOUR =	87.52
MIN VALUE -	.000	400	
MAX VALUE -	6.000	1.500	
DELTA VALUE-	.100	.005	
٧	INDEPENDE	NT VARIABLES	
87.51	.700	. 125	
87.53	.700	.320	
87.52	.900	.045	
87.52	1,600	.675	
87.53	3,600	.985	
87.52	3.800	1.000	
87.52	4.800	.295	
87.53	4.900	.320	
87.52	5.200	1.000	
87.53	5.500	.955	
87.53	5.600	.930	
87.52	5.700	.895	
87.52	5.800	.705	

Table 7. CRIT Output (Contour Data)

BIBLIOGRAPHY

- [1] Maghsoodloo, S. and J.N. Hool, "On Response-Surface Methodology and its Computer Assisted Teaching," The American Statistician, Vol 30, pp140-144(1976).
- [2] Montgomery, D.C., Design and Analysis of Experiments, Wiley, New York (1991).

VI. STUDENT MANUAL

RSSP- A FORTRAN SIMULATION PACKAGE FOR USE IN TEACHING RESPONSE SURFACE METHODOLOGY

STUDENT MANUAL

OVERVIEW

This manual explains to the student how to use the Response Surface Simulation Package (RSSP). This package is used in the instruction of Response Surface Methodology (RSM). It was developed by James T. Treharne, an Industrial Engineering graduate student at Auburn University. The programs operate on an IBM (or compatible) personal computer. The simulation is a complete revision of a similar set of programs called Response Surface Analysis Program (RSAP). Jesse Martin, a former Auburn University graduate student, developed RSAP in the early 1970's. RSSP enables a student to reinforce his knowledge of Response Surface Methodology by giving him a simple, yet realistic RSM problem to solve.

RSSP is designed for use in graduate level engineering courses that teach RSM. RSM techniques are thoroughly discussed by Montgomery [2]. A student should have an understanding of multiple regression, experimental design, and analysis of variance. RSSP allows the instructor to load the equations for at most 15 unique surfaces into the computer. The student is then required, without knowledge of the true surface equation, to use proper RSM techniques to arrive near the optimum region, where the assigned surface is estimated by a second-order model. The student can also find the estimated optimal point and obtain data

to plot estimated response contours. The simulation package has the following capabilities:

- The simulation package is designed to accommodate at most five independent variables. The instructor will inform the student of the number of variables.
- 2. The instructor may provide data for at most fifteen different response surfaces. This normally enables each student to experiment with a unique surface.
- 3. The experimental error is assumed normally distributed with a mean equal to zero. The instructor specifies the size of the error variance. The student can estimate the size of the error variance during experimentation.
- 4. The maximum number of observations is restricted to sixty. That is to say, the degrees of freedom for the corrected total SS's cannot exceed 59.

 This number is sufficient for almost any practical situation because an experimenter should always design an experiment that minimizes cost while providing the necessary amount of degrees of freedom to estimate the coefficients and error variance.
- 5. Each surface that the instructor inputs is represented by a second-order equation, where

coefficients may be set to zero. Its general form is

$$Y = \mathcal{B}_o + \sum_{i=1}^5 \mathcal{B}_{ii} X_i^2 + \sum_{i=1}^4 \sum_{j=i+1}^5 \mathcal{B}_{ij} X_i X_j + \sum_{i=1}^5 \mathcal{B}_i X_i.$$

6. The student is responsible for preparing a proper experimental design. Failure to do so may provide invalid results. For example, if the student uses an unbalanced design, the equations used to calculate the various sum of the squares terms are invalid.

REVIEW OF RSM

The primary goal of RSM is to find the set of conditions which optimize a given response surface. RSM is an iterative approach that finds the optimal set of conditions as quickly and as efficiently as possible. The general steps are:

- 1. Design a 1st-order experiment. The design must include a sufficient number of observation points to estimate the regression coefficients, the experimental error, and to test for goodness of fit. The test should also use the proper spacing, which depends heavily on experimental error.
- Conduct first-order experiments.

- 3. Determine if a first-order model is adequate. If an adequate fit exists and at least one independent variable is significant, move along the path of steepest ascent (descent) to the next center point. If there is not a good fit, adjust the spacing until a satisfactory fit is obtained. If a good fit is impossible and the coefficients remain insignificant, it is time to try a secondorder model. On the other hand, if there is a good fit but no significant coefficients, the experimenter should increase the spacing. time to move to a second-order model when the experimenter can achieve a good fit but cannot achieve significant coefficients.
- 4. Design second-order experiments. There must be a sufficient number of observations as in the firstorder design.
- 5. Conduct the second-order experiments.
- 6. From the ANOVA table determine if there is an adequate fit. If there is a good fit and the coefficients are significant, expand the spacing until the F(LOF) is 75% of the critical F value.

 If there is not a good fit, the experimenter must decrease spacing. If the fit is adequate and there are no significant coefficients, the spacing must be increased.

- 7. Estimate the optimal value for the dependent variable and the values of the independent variables where the optimum occurs.
- 8. Map contours of the response variable.

 An additional source highlights an excellent strategy for progressing through the above steps [1].

RSSP PROGRAMMING

When using RSSP, the student must possess two executable Fortran programs: RSM.EXE and CRIT.EXE. The student must also have a data file, STU.DAT, which contains encoded data for the surfaces. The student should not attempt to make any changes to this data file.

Additionally, there is no value to the student to read this data file since it contains encoded data for use by the main program, RSM.EXE. A detailed explanation of the two programs follows.

RSM. EXE

RSM.EXE is the primary program in the simulation package. This program begins by reading the encoded data from STU.DAT. It then decodes the data and prompts the student for his surface number, the number of independent variables, the number of distinct design points, and the order of the model being used. The program then prompts the student for the number of repetitions at each point as well as the location of each point. The program summarizes

this data on the computer screen so that the student may verify the input. If there is an input error, the student must reenter the data. Cnce this is complete, the program generates a response value for each observation in the experiment. A random number generator is used to calculate the experimental error at each design point. This error is based on the given error variance in the surface data. error range is restricted to within four standard deviations of the mean (or zero). The program produces three blocks of information. First, it prints the rearranged input data. This includes the value of the response variable, design point number, and the values of the independent variables. Second, the program prints a standard ANOVA table which includes the regression coefficients and the necessary F statistics to conduct the significance and goodness-of-fit tests. Third, the program prints a table with generated responses, the forecasted responses (from the regression equation), their difference, and their differences squared. The sum of the squared differences is also equal to the residual sum of the squares in the ANOVA table. Finally, the program enables the student to obtain a hard copy of the results and to begin another set of experiments. The following points pertain to the execution of this program.

1. NAME- Enter up to 25 characters.

- Surface Number- Each student is assigned his own surface number.
- 3. Independent Variables- Maximum of five.
 Instructor must inform the student of this number.
- 4. First Design Point- The instructor may have included an initial starting point in STU.DAT.
 This is the center of the initial set of first-order experiments.
- 5. The program will summarize the data input. If an error was made during input, the data must be reentered. The values are printed with a precision of four decimal places.

An example output is shown in Table 8. This is a first-order experiment. The exact surface equation used is

$$Y = -4X_1^2 - 40X_2^2 + 11X_1X_2 + 6X_1 + 17X_2 + 60$$
.

The estimated surface equation (for a first-order experiment) is

 $\hat{Y} = -8.868235X_1 + 165.7400X_2 + 200.5518$.

The F-Ratios show that the three coefficients are all highly significant. Additionally, the lack of fit is insignificant. Therefore, the student should proceed along the path of steepest ascent to the next center point.

```
NAME: John Smith
SURFACE NUMBER: 9
           ----REARRANGED INPUT DATA----
-108.18860706 1 1.0000
                           -1.0800
                                      -1.9200
-108.36055697 1 1.0000
                          -1.0800
                                     -1.9200
-134.21745144 2 1.0000
                          -1.0800
                                      -2.0800
-134.99183941 2 1.0000
                          -1.0800
                                      -2.0800
                           -.9200
                                     -1.9200
-109.55123416 3 1.0000
-109.45909915 3 1.0000
                           -.9200
                                      -1.9200
-136.17572662 4 1.0000
                           -.9200
                                     -2.0800
                                     -2.0800
-136.24806629 4 1.0000
                           -.9200
-121.67868754 5 1.0000
-121.81958978 5 1.0000
                                     -2.0000
                          -1.0000
                                      -2.0000
                          -1.0000
-121.96933382 5 1.0000
                          -1.0000
                                      -2.0000
                  ANALYSIS OF VARIANCE TABLE
SOURCE
                                                                 COEFFICIENT
             DF
                                                    F-RATIO
                       SS
                  .1652963E+06
                                  .1502693E+05
TOTAL
             11
                                                 .2703384E+^7
                                                                .2005518E+03
DUE TO Bo
                  .1638851E+06
                                  .1638851E+06
                                                 .6642210E+U2 -.8868235E+01
DUE TO 81
                  .4026655E+01
                                  .4026655E+01
              1
                                                 .2320025E+05
                                                                .1657400E+03
                                  .1406451E+04
DUE TO B2
                  .1406451E+04
RESIDUAL
                  .6673240E+00
                                  .8341550E-01
 LACK OF FIT 2 .3035907E+00
                                  .1517953E+00
                                                 .2503955E+01
 ERROR
               6 .3637334E+00
                                  .6062223E-01
                                          DIFFERENCE
 POINT GENERATED
                          FORECASTED
                                                           DIFF SQUARED
                                        -.9724947E-01
                                                          .9457459E-02
        -.1081886E+03 -.1080914E+03
                       -.1080914E+03
-.1346098E+03
-.1346098E+03
                                        -.2691994E+00
                                                          .7246831E-01
        -.1083606E+03
        -.1342175E+03
                                         .3923026E+00
                                                          .1539013E+00
   2
                                                          .1459892E+00
                                        -.3820853E+00
        -.1349918E+03
        -.1095512E+03
                       -.1095103E+03
                                        -.4095880E-01
                                                          .1677623E-02
                       -.1095103E+03
                                                           .2619004E-02
   3
        -.1094591E+03
                                          .5117620E-01
                       -.1360287E+03
                                         -.1470548E+00
                                                          .2162511E-01
        -.1361757E+03
        -.1362481E+03
                       -.1360287E+03
                                         -.2193945E+00
                                                          .4813393E-01
                       -.1220600E+03
        -.1216787E+03
   5
                                          .3813373E+00
                                                          .1454181E+00
        -.1218196E+03
                       -.1220600E+03
                                          .2404351E+00
                                                          .5780903E-01
        -.1219693E+03 -.1220600E+03
                                          .9069103E-01
                                                          .8224863E-02
                           SUM OF SQUARED DIFFERENCES=
                                                          .6673240E+00
```

Table 8. RSM Output (First-Order Model)

An example output of a second-order experiment using the same surface is shown in Table 9. In this case, the estimated surface equation is

 $\hat{Y}=-3.93X_1^2-40.04X_2^2+10.95X_1X_2+5.84X_1+17.15X_2+60.12$. All of the coefficients are significant. The lack of fit test indicates a very good fit. The next step is for the student to keep the same center point and expand the spacing until either there is no longer a good fit or one of the coefficients is no longer significant.

AME: John Si	ni th						
SURFACE N	MBER:	9					
	R	EARRANGED INF	NT SATA				
58.83026	0170 1 1	.00001	640	.4000	.0269	.1600	0656
58.6582	5179 1 1	.00001	640	.4000	.0269	.1600	0656
11.13373	3732 2 1		2500	1.4000	.0625	1.9600	.3500
10.35934	935 2 1	.0000 .2	500	1.4000	.0625	1.9600	.3500
-14.57330			2500	1.8140	1.5625	3.2906	2.2675
-14.48124			500	1.8140	1.5625	3.2906	2.2675
33.39626			2500	1.4000	5.0625	1.9600	3.1500
33.32392			500	1.4000	5.0625	1.9600	3.1500
60.0393			640	.4000	7.0 969	.1600	1.0656
	2593 5 1		640	.4000	7.0969	.1600	1.0656
	404 6 1		2500	6000	5.0625	.3600	-1.3500
	2062 6 1		500	6000	5.0625	.3600	-1.3500
-10.98016			500	-1.0140	1.5625	1.0282	-1.2675
-11.29439			2500	-1.0140	1.5625	1.0282	-1.2675
35.0832			500	6000	.0625	.3600	1500
34.95086			500	6000	.0625	.3600	1500
67.19024		· · · · · · · · · · · · · · · · · · ·	2500	.4000	1.5625	.1600	.5000
67.23024	4// 9 1	.0000 1.2	2500	.4000	1.5625	.1600	.5000
		ANALYSIS OF	VARIANC	E TABLE			
SOURCE	DF	SS		MS	F-RATIO	COEF	FICIENT
TOTAL	18	.2909036E+05		6131E+04			
DUE TO BO	1	.1424685E+05	. 142	4685E+05	.3282462E+06		256E+02
DUE TO 81	1	.2948095E+02		8095E+02	.6792390E+03		612E+01
DUE TO B2	1	.7993258E+03		3258E+03	.1841641E+05		762E+02
DUE TO 811	-	.8989108E+02		9108E+02	.2071084E+04		354E+01
DUE TO 822		.9322846E+04		2846E+04	.2147977E+00		668E+02
DUE TO 812		.9597410E+03		7410E+03	.2211236E+05	.1095	297E+02
RESIDUAL	12	.4175281E+00		9401E-01			
LACK OF F		.2690180E-01		7268E-02	.2066052E+00)	
ERROR	9	.3906263E+00	.434	0292E-01			

Table 9. RSM Output (Second-Order Model)

POINT	GENERATED	FORECASTED	DIFFERENCE	DIFF SQUARED
1	.58830206+02	.5879363E+02	.3657242E-01	.1337542E-02
1	.5865825E+02	.5879363E+02	1353775E+00	.1832706E-01
2	.1113374E+02	.1070532E+02	.4284123E+00	.1835371E+00
2	.1035935E+02	.1070532E+02	3459756E+00	.1196991E+00
2 2 3 3	145 7338 E+02	1452230E+02	510 7960E -01	.2609126E-02
3	1448125E+02	1452230E+02	.4105540E-01	.168554602
4	.3339626E+02	.3339810E+02	1843128E-02	.3397121E-05
4	.3332392E+02	.3339810E+02	7418279E-01	.5503086E-02
5 5	.6003933E+02	.5990621E+02	.1331155E+00	.1771974E-01
	.5989843E+02	.5990621E+02	7786738E-02	.6063329E-04
6	.1383066E+02	.1387317E+02	4250449E-01	.1806632E-02
6	.1380672E+02	.1387317E+02	6644790E-01	.4415324E-02
7	1098016E+02	1115555E+02	.1753920E+00	.3076237E-01
7	1129440E+02	1115555E+02	1388441E+00	.1927770E-01
8	.3508321E+02	.3499228E+02	.9092966E-01	.8268204E-02
8	.3495086E+02	.3499228E+02	4141944E-01	.1715570E-02
9	.6719025E+02	.6721025E+02	2000663E-01	.4002654E-03
9	.6723024E+02	.6721025E+02	.1999062E-01	.3996249E-03
		SUM OF SQUAR	RED DIFFERENCES=	.4175281E+00

Table 9 (Continued). RSM Output (Second-order Model)

CRIT. EXE

The second program is executed after an adequate second-order model has been found. The student is prompted to input the coefficients of his second-order model. The student then verifies the equation by reviewing it on the computer screen. The program calculates the first partial derivative with respect to each independent variable and sets them equal to zero. These equations are then solved simultaneously by matrix algebra techniques. The program displays and prints the value of the independent variables and the response variable at the optimal point. The student then has the option to let the program generate data to map response contours. The student inputs the y value of the contour, as well as the maximum and minimum

values for each independent variable. The student must also input an increment for each variable called delta. The delta values will dictate how many response values are generated. For example, assume that the minimum and maximum values for X_1 are 1.0 and 2.0 respectively. If the delta value is .2 for X_1 , then responses will be generated for X_1 equal to 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0. The program calculates the response variable at all points (incremented by delta) between the stated ranges of the independent variables. If the response value is within .01 units of the interested contour, the values for the response variable and the independent variables are displayed. The student can increase the size of the output by decreasing delta or extending the range between the minimum and maximum values for each independent variable of interest. Trial and error may be necessary when specifying the parameters used to calculate the responses in order to get a reasonable amount of data points to plot the The program allows the student to continue to contours. plot as many contours as he desires. Table 10 shows the output from CRIT.EXE. This is the optimal point for the same surface as before. The CRIT results at this point are very close to the exact values of the optimal conditions. The exact optimal point is $X_1 = 1.285164$ and $X_2 = .389210$. The value of the response variable at the exact optimal point is 67.163776.

CRITICAL ANALYSIS OF SURFACE

NAME: John Smith

SURFACE NUMBER= 9

SURFACE EQUATION IS:

Y= -3.931X1**2 + -40.037X2**2 + 10.953X1*X2 + 5.841X1

+ 17.148x2 + 60.123

-- VALUE OF INDEPENDENT VARIABLES AT OPTIMAL POINT--

X 1= 1.286437

x 2= .390118

-- VALUE OF RESPONSE VARIABLE AT OPTIMAL POINT--

Y= 67.224915

Table 10. CRIT Output (Optimal Value)

Table 11 shows the contour data output from CRIT.EXE.

VALUES	[+/01]	TO PLOT CONTOUR =	60.50
MIN VALUE -	500	500	
MAX VALUE -	3.200	1.500	
DELTA VALUE-	.100	.002	
Y	INDEPEN	DENT VARIABLES	
60.51	- 100	.078	
60.50	100	.324	
60.50	.200	.514	
60.50	.300	046	
60.51	.300	.556	
60.50	.400	056	
60.49	.400	.594	
60.50	.500	062	
60.49	.800	.710	
60.49	.900	058	
60.49	1.100	042	
60.49	1.300	018	
60.49	1.300	.802	
60.51	1.400	.814	
60.50	1.500	.014	
60.51	1.700	.054	
60.49	1.800	.844	
60.51	2.100	.162	
60.49	2.200	. 196	
60.50	2.200	.834	
60.50	2.400	.806	
60.49	2.500	.330	
60.50	2.500	.782	
60.50	2.600	.394	
60.49	2.600	.746	
60.50	2.700	.488	
60.51	2.700	.678	
60.49	2.700	.680	

Table 11. CRIT Output (Contour Data)

BIBLIOGRAPHY

- [1] Maghsoodloo, S. and J.N. Hool, "On Response-Surface Methodology and its Computer Assisted Teaching," The American Statistician, Vol 30, pp140-144(1976).
- [2] Montgomery, D.C., Design and Analysis of Experiments, Wiley, New York (1991).

BIBLIOGRAPHY

- [1] Lindfield, G.R. and J.E.T. Penny, Microcomputers in Numerical Analysis, Wiley, New York (1989).
- [2] Maghsoodloo, S. and J.N. Hool, "On Response-Surface Methodology and its Computer Assisted Teaching," The American Statistician, Vol 30, pp140-144 (1976).
- [3] Martin, Jesse, "RSAP- A Computerized Simulator For Use In Teaching Response Surface Analysis," Unpublished Thesis, Auburn University (1973).
- [4] Montgomery, D.C., Design and Analysis of Experiments, Wiley, New York (1991).

APPENDICES

APPENDIX A- RSMSU. EXE PROGRAM LISTING

----SETUP PROGRAM-- RESPONSE SURFACE METHODOLOGY ---PROGRAM NAME-- RSMSU.FOR

WRITTEN BY JAMES T. TREHARNE MARCH 11, 1991

THIS PROGRAM IS USED BY THE INSTRUCTOR AS PART OF THE RESPONSE METHODOLOGY SIMULATION. THIS PROGRAM READS THE INSTRUCTOR'S DATA FILE(INSTR.DAT) WHICH CONTAINS ALL THE REQUIRED DATA ON THE SURFACES. THE PROGRAM USES THIS DATA FILE TO CREATE AN ENCODED DATA FILE (STU.DAT) WHICH IS GIVEN TO THE STUDENT AND USED BY THE MAIN SIMULATION PROGRAM (RSM.FOR)

PROGRAM RSMSU

DOUBLE PRECISION COEF(15,5), CIACT(15,10), CFORD(15,5)

DOUBLE PRECISION SCOEF(15,5), SCIACT(15,10), SCFORD(15,5)

DOUBLE PRECISION CONST(15), EVAR(15)

DOUBLE PRECISION SCONST(15)

DOUBLE PRECISION START(15,5)

INTEGER NSUR, ILIST

CHARACTER*25 NAME, DATE

OPEN FILE CREATED BY INSTRUCTOR

OPEN (10, FILE='INSTR.DAT', STATUS='OLD')

OPEN A NEW FILE FOR STUDENT USE

OPEN (11, FILE='STU.DAT', STATUS='NEW')

DEFINE PRINTER AS FILE #6

OPEN (6, FILE='PRN', STATUS='NEW')

DEFINITION OF VARIABLES

NSUR- NUMBER OF SURFACES- MAX IS 15
ILIST- "0"= DO NOT PRINT OPTIONAL REPORT
"1"= PRINT OPTIONAL REPORT

COEF(15,5)
COEFFICIENTS OF HIGHER ORDER TERMS, E.G. B11, B22

SCOEF(15,5)
CIACT(15,10)
SCIACT(15,10)
COEFFICIENTS OF INTERACTION TERMS, E.G. B12

SCIACT(15,10)
COEFFICIENTS OF INTERACTION TERMS

COORD(15,5)
COEFFICIENTS OF FIRST ORDER TERMS, E.G. B1, B2

SCFORD(15,5)
CONSTANT TERM IN SURFACE EQUATION, BO

SCONST(15)
ENCODED CONSTANT TERM IN SURFACE EQUATION

EVAR(15)
STARTING POINT OF 5 VARIABLES

```
INITIALIZE VARIABLES
    NSUR=0
    ILIST=0
                 INITIALIZE ALL ARRAYS TO "O"
    DO 15 I=1,15
      CONST(I)=0
      SCONST(I)=0
      EVAR(15)=0
      DO 5 K=1,10
        CIACT(I,K)=0
        SCIACT(I,K)=0
 5
      CONTINUE
      DO 10 K=1,5
        COEF(I,K)=0
        SCOEF(I,K)=0
        CFORD(I,K)=0
        SCFORD(I,K)=0
        START(I,K)=0
10
      CONTINUE
15
    CONTINUE
                 SCREEN START UP INFORMATION
    WRITE(*,*)
    WRITE(*,20)
20 FORMAT(1X, 'WELCOME TO THE RESPONSE SURFACE METHODOLOGY',
   +' SIMULATION SETUP PROGRAM')
    WRITE(*,*)
    WRITE(*,25)
25 FORMAT(9X,'This program will create a data file for the',
   +' student',/
          'to use in the simulation. The data file is called'
   +,9X,
   +,/,9X,'STU.DAT. The data is encoded so it will not aid the'
   +,/,9X,'student if he/she reads it. You must already have a'
   +,/,9X,'data file named INSTR.DAT which must include a value'
   +,/,9X,'for every term, even if it is zero or not used in the'
   +,/,9X,'model. The student should be given only the file'
   +,/,9X,'STU.DAT and not INSTR.DAT. The data should be'
   +,/,9X,'arrayed in the following manner:')
    WRITE(*,*)
    WRITE(*,30)
30 FORMAT(1X,'XXXX.XX,XXX.XX,XXX.XX,XXX.XX,XXX.XX,XXX.XX,XXX.XX,
   +,'XXX.XX,XXX.XX,XXX.XX')
    WRITE(*,*)'
                B11
                        B22
                               ß33
                                      B44
                                             B55'
    WRITE(*,*)'
                B12
                        B13
                               B14
                                      B15
                                             ß23
                                                     B24',
         ß25
                ß34
                      ß35
                             B45'
   WRITE(*,*)'
                  ßl
                         ß2
                                ß3
                                       ß4
                                               ß5'
   WRITE(*,*)'
                  Bo'
   WRITE(*,*)'
                 EVAR
   WRITE(*,*)'
                  X1
                         X2
                                Х3
                                       X4
                                              X5
                                                    (STARTING POINT)'
   WRITE(*,*) ' '
```

```
WRITE(*,*) ' '
     CALL CONT
     CALL SKIP(12)
     WRITE(*,*)'
                                        PLEASE ENTER YOUR NAME'
     CALL SKIP(12)
     READ(*,32) NAME
     CALL SKIP(12)
32
     FORMAT(A25)
     WRITE(*,*) ' '
     WRITE(*,*)'
                                        PLEASE ENTER THE DATE'
     CALL SKIP(12)
     READ(*,33) DATE
     CALL SKIP(12)
33
     FORMAT (A25)
     WRITE(*,*) ' '
35
     WRITE(*,*)'
                   ENTER THE NUMBER OF SURFACES (5) IN YOUR DATA',
    +' SET'
     CALL SKIP(12)
     REWIND(10)
     REWIND(11)
     READ(*,40,ERR=35) NSUR
     CALL SKIP(12)
     WRITE(11,*) NSUR
40
    FORMAT(12)
45
     FORMAT(1X, 10F12.3)
                  READ INSTR.DAT(EACH SURFACE HAS 6 LINES OF DATA)
     DO 60 I=1, NSUR
       READ(10, *, ERR=140) (COEF(I,J),J=1,5)
       READ(10, *, ERR=140) (CIACT(I,J),J=1,10)
       READ(10,*,ERR=140) (CFORD(1,J),J=1,5)
       READ(10, *, ERR=140) CONST(I)
       READ(10, *, ERR=140) EVAR(I)
       READ(10, \star, ERR=140) (START(I,J),J=1,5)
                  ENCODE DATA ON COEFFICIENTS
       DO 50 J=1,5
         SCOEF(I,J) = (COEF(I,J)+14)*2
         SCFORD(I,J) = (CFORD(I,J)+21)*3
50
       CONTINUE
       DO 55 J=1,10
         SCIACT(I,J) = (CIACT(I,J)+11)*4
55
       CONTINUE
       SCONST(I) = (CONST(I)+5)*7
                  WRITE TO ENCODED FILE(STU.DAT)
      WRITE(11,*) (SCOEF(I,J),J=1,5)
      WRITE(11,*) (SCIACT(I,J),J=1,10)
```

```
WRITE(11,*) (SCFORD(I,J),J=1,5)
      WRITE(11,*) SCONST(I)
      WRITE(11,*) EVAR(I)
      WRITE(11,*) (START(I,J),J=1,5)
60 CONTINUE
    REWIND (11)
      READ(11,*) NSUR
      CALL SKIP(25)
      WRITE(*,65) NSUR
      FORMAT(10X,' NUMBER OF SURFACES TO BE WRITTEN TO STU.DAT ='
65
   +,12)
      CALL SKIP(12)
      CALL CONT
      CALL SKIP(25)
67
      DO 85 I=1, NSUR
                 READ BACK ENCODED DATA FILE (STU.DAT)
      READ(11,*) (SCOEF(I,J),J=1,5)
      READ(11,*) (SCIACT(I,J),J=1,10)
      READ(11,\star) (SCFORD(I,J),J=1,5)
      READ(11,*) SCONST(I)
      READ(11,*) EVAR(I)
      READ(11,*) (START(I,J),J=1,5)
      WRITE(*,*)
      CALL SKIP(20)
                 DECODE DATA FROM STU.DAT
      DO 70 J=1,5
        COEF(I,J) = (SCOEF(I,J)/2)-14
        CFORD(I,J) = (SCFORD(I,J)/3)-21
70
      CONTINUE
      DO 75 J=1,10
       CIACT(I,J) = (SCIACT(I,J)/4)-11
75
      CONTINUE
      CONST(I) = (SCONST(I)/7)-5
      WRITE(*,*)
                 WRITE DATA TO SCREEN
      WRITE(*,80)I
      FORMAT(25X, 'SURFACE NUMBER = ',12)
80
      WRITE(*,*)
      WRITE(*,45) (COEF(I,J),J=1,5)
      WRITE(*,45) (CIACT(I,J),J=1,10)
      WRITE(*,45) (CFORD(I,J),J=1,5)
      WRITE(*,45) CONST(I)
      WRITE(*,45) EVAR(I)
      WRITE(*,45) (START(I,J),J=1,5)
      CALL SKIP(5)
      CALL CONT
```

```
83
       CALL SKIP(25)
 85 CONTINUE
       CALL SKIP(20)
                        DO YOU WANT A PRINTOUT OF THE SURFACE DATA?'
 90 WRITE(*,*)'
     WRITE(*,*)
     WRITE(*,*)'
                                     "1" = PRINTOUT'
                                    "O" = NO PRINTOUT- EXIT PROGRAM'
     WRITE(*,*)'
     CALL SKIP(9)
     READ(*,*,err=130) ILIST
     IF (ILIST.EQ.0) THEN
       GO TO 115
     ENDIF
     IF (ILIST.EQ.1) THEN
       GO TO 95
     ENDIF
     GO TO 90
 95 WRITE(6,*)
                                   RSM- CONTENTS OF FILE STU.DAT'
     WRITE(6,*)'
     WRITE(6,*)
     WRITE(6,*)
                     PREPARED BY: ', NAME
     WRITE(6,*)'
     WRITE(6,*)
                     DATE PREPARED: ',DATE
     WRITE(6,*)'
     WRITE(6,*)
     WRITE(6,*)
     WRITE(6,100)
100 FORMAT(1x,'XXXX.XX XXX.XX XXX.XX XXX.XX XXX.XX XXX.XX',
    +' XXX.XX XXX.XX XXX.XX XXX.XX')
     WRITE(*,*)
                                        B44
                                                ß55 ¹
     WRITE(6,*)' B11
                          B22
                                 B33
     WRITE(6,*)' B12
                          B13
                                 B14
                                        B15
                                                ß23
                                                       B24',
          ß25
                 ß34
                         B35
                                B45'
                                         ß4
                                                 ß5 '
     WRITE(6,*)'
                  ß1
                          ß2
                                 ßЗ
                  ßo'
     WRITE(6,*)'
     WRITE(6,*)' EVAR
     WRITE(6,*)'
                  X1
                           X2
                                 х3
                                          X4
                                                 X5 (STARTING POINT)'
     WRITE(6,*)
     REWIND (11)
       WRITE(6,65) NSUR
       WRITE(6,*)
     DO 110 I=1, NSUR
       WRITE(6,105) I
105
       FORMAT(25X, 'SURFACE NUMBER ', 12)
       WRITE(6,*)
       WRITE(6,45) (COEF(I,J),J=1,5)
       WRITE(6,45) (CIACT(I,J),J=1,10)
       \mathtt{WRITE}(6,45) \quad (\mathtt{CFORD}(\mathtt{I},\mathtt{J}),\mathtt{J=1},5)
       WRITE(6,45) CONST(I)
       WRITE(6,45) EVAR(I)
       WRITE(6,45) (START(I,J),J=1,5)
```

```
WRITE(6,*)
110 CONTINUE
115 WRITE(*,*)'
                             STU.DAT IS PROPERLY SETUP FOR USE'
     CALL SKIP(12)
120 STOP
130 write(*,*)'
                         YOU MUST ENTER A "1(ONE)" OR "0"(ZERO)'
     WRITE(*,*)
     WRITE(*,*)
     GO TO 90
140 WRITE(*,*)'ERROR READING INSTR.DAT! MAKE SURE IT IS FORMATTED'
     WRITE(*,*)'PROPERLY AND HAS DATA FOR ALL SURFACES STATED.'
     GO TO 120
     END
                  SUBROUTINE SKIP-- PRINTS 'N' BLANK LINES
     SUBROUTINE SKIP(N)
     DO 150 I=1,N
        WRITE(*,*)' '
150 CONTINUE
     RETURN
     END
                  SUBROUTINE CONT- HALTS EXECUTION UNTIL USER READY
     SUBROUTINE CONT
    CHARACTER*1 ANS, BLK
    DATA BLK/' '/
    ANS=BLK
    WRITE(*,1)
 1 FORMAT(/,'
                                    To continue, press RETURN key')
    READ(*,2) ANS
 2 FORMAT(A1)
    RETURN
    END
```

APPENDIX B- RSM. EXE PROGRAM LISTING

```
-----PAIN PROGRAM----
                  PROGRAM NAME: RSM.FOR
                                 WRITTEN BY JAMES T. TREHARNE
                                 APRIL 3, 1991
PROGRAM RSM
DIMENSION COEF(15,5), CIACT(15,10), CFORD(15,5),
+CONST(15), EVAR(15)
 INTEGER NSUR, IORDER, ILIST, NVAR, NSTUD
DIMENSION SCOEF(15,5), SCIACT(15,10), SCFORD(15,5)
DIMENSION SCONST(15), START(15,5), Z(60,6)
 DIMENSION NPT(60), IDEF(25)
DOUBLE PRECISION Y(60), XT(25,60), X(60,25), A(25,25), AA(25,25),
+B(25),SS(25),G(60),AINV(25,25),
+CON, VAL, TEST(25, 25), TMS(25), FRATIO(25), SAM, SUM, SSR, TT, ESS, EESS,
+TEESS, YD(60), YF(60), COUNT, YDTOTAL, YDSQ(60)
REAL*8 SEED
CHARACTER NAME * 25
               DEFINITION OF VARIABLES
COEF(15,5)- COEFFICIENTS OF HIGHER ORDER TERMS, E.G. B11, B22
SCOEF(15,5) - CODED COEF. OF HIGHER ORDER TERMS, E.G. $11,822
CIACT(15,10)-COEFFICIENTS OF INTERACTION TERMS, E.G. B12
SCIACT(15,10)-CODED COEFFICIENTS OF INTERACTION TERMS, E.G. B12
CFORD(15,5) - COEFFICIENTS OF FIRST ORDER TERMS, E.G. $1
SCFORD(15,5)-CODED COEFFICIENTS OF FIRST ORDER TERMS, E.G. B1
CONST(15) - CONSTANT TERM IN SURFACE EQUATION SCONST(15) - CODED CONSTANT TERM IN SURFACE EQUATION
EVAR(15) - ERROR VARIANCE
 START(15,5) - STARTING POINT OF 5 VARIABLES
NSUR- NUMBER OF SURFACES- MAX IS 15
NSTUD- STUDENT/SURFACE NUMBER
NVAR- # INDEPENDENT VARIABLES
NDOBS- # OF DISTINCT POINTS FOR EXPERIMENTATION
NOBS- # OF OBSERVATIONS (TOTAL)
IORDER- USED TO DETERMINE 1ST/2ND ORDER EQUATION NREPS- # OF OBSERVATIONS AT A GIVEN DISTINCT POINT
ILIST- USED TO PRINT HARDCOPY RESULTS
NPT(50) - VALUE OF DISTINCT POINT NUMBER FOR UP TO 50 OBS.
 Z(60,6) - USED TO INPUT VALUES OF DISTINCT OBSERVATIONS
Y(60) - RESPONSE VARIABLE AT EACH POINT
XT(25,60) TRANSPOSE OF MATRIX X
X(60,25) - INDEPENDENT TERMS, DUMMY, X1, X2, X3, X4, X5, X1**2,...
A(25,25) - MATRIX XT * X
AA(25,25)- COPY OF MATRIX A USED TO GET INVERSE
AINV(25,25) - IDENTITY MATRIX USED TO GET INVERSE OF A
B(25) - COEFFICIENTS OF FITTED EQUATION
YF(60) - FORECASTED RESPONSE
YD(60) - DIFFERENCE BETWEEN FORECASTED AND GENERATED RESPONSE
SS(25) - SUM OF SQUARES TERMS
IDEF(25) - DEGREE OF FREEDOM TERMS
TMS(25) - MEAN SQUARE VALUES
FRATIO(25) - VALUE FROM F-TEST
YDTOTAL-SUM OF SQUARED DIFFERENCES
```

OPEN STUDENT DATA FILE (ENCODED)

```
OPEN(11, FILE='STU.DAT', STATUS='OLD')
                  OPEN PRINTER AS FILE
    OPEN(6, FILE='PRN', STATUS='NEW')
                  ELIMINATE TRACE (IDBUG) IN FINAL VERSION
    IDBUG=0
    CALL SKIP(30)
    WRITE(*,*)
                                WELCOME TO THE MAIN SIMULATION'.
   +' PROGRAM'
    WRITE(*,*)'
    WRITE(*,*)'
                                                  FOR'
    WRITE(*,*)'
    WRITE(*,*)'
                                     RESPONSE SURFACE METHODOLOGY'
    CALL SKIP(10)
    WRITE(*,*)'
                                        PLEASE ENTER YOUR NAME '
    CALL SKIP(2)
    READ(*,4,ERR=1) NAME
    FORMAT(I1)
    FORMAT (A25)
    CALL SKIP(24)
    SEED=12345.DO
                 READ ENCODED VALUES FROM STUDENT DATA FILE
    REWIND(11)
    READ(11,*) NSUR
    DO 15, I=1, NSUR
      READ(11,*) (SCOEF(I,J),J=1,5)
      READ(11,*) (SCIACT(I,J),J=1,10)
      READ(11,*) (SCFORD(I,J),J=1,5)
      READ(11,*) SCONST(I)
      READ(11,*) EVAR(I)
      READ(11,*) (START(I,J),J=1,5)
                 DECODE DATA FROM STU.DAT
    DO 7 J=1,5
      COEF(I,J) = (SCOEF(I,J)/2)-14
      CFORD(I,J) = (SCFORD(I,J)/3)-21
    CONTINUE
    DO 10 J=1,10
      CIACT(I,J) = (SCIACT(I,J)/4)-11
10 CONTINUE
    CONST(I) = (SCONST(I)/7)-5
15 CONTINUE
    REWIND (11)
                 BEGIN STUDENT INPUT
20
    WRITE(*,21)
    FORMAT(10X, 'WHAT SURFACE NUMBER HAVE YOU BEEN ASSIGNED [1-15]?')
21
    CALL SKIP(12)
    READ(*,*,ERR=20) NSTUD
    CALL SKIP(24)
    WRITE(*,*)
    IF (IDBUG.EQ.1) THEN
       WRITE (6,*) (COEF (NSTUD, J), J=1,5)
       WRITE(6,*) (CIACT(NSTUD,J),J=1,10)
       WRITE(6,*) (CFORD(NSTUD,J),J=1,5)
```

```
WRITE(6,*) CONST(NSTUD)
        WRITE(6,*) EVAR(NSTUD)
        WRITE(6,*) (START(NSTUD, J), J=1,5)
        WRITE(*,*)
        CALL CONT
22
     ENDIF
     IF (NSTUD.LE.NSUR) GOTO 25
     WRITE(*,*)
                           THERE IS NO DATA FOR YOUR SURFACE NUMBER'
     WRITE(*,*)'
     GOTO 20
     WRITE(*,*)
    WRITE(*,*)'
                               HOW MANY INDEPENDENT VARIABLES (1-5)?'
     WRITE(*,*)
     CALL SKIP(12)
     READ(*,*,ERR=25) NVAR
     WRITE(*,*)' YOUR FIRST DESIGN POINT IS (X1,X2,...):'
     CALL SKIP(3)
     WRITE(*,28) (START(NSTUD,I),I=1,NVAR)
 28 FORMAT(10X,5F12.4)
     CALL SKIP(7)
     CALL CONT
     CALL SKIP(24)
 30 WRITE(*,32)
 32 FORMAT(8X, 'HOW MANY "DISTINCT" DESIGN POINTS IN THIS',
    +' EXPERIMENT?')
     CALL SKIP(12)
     READ(*,*,ERR=30) NDOBS
     WRITE(*,*)
     CALL SKIP(23)
                                   WHAT ORDER EQUATION ARE YOU USING?'
 35 WRITE(*,*)
     WRITE(*,*)
                                         "1"= FIRST ORDER'
     WRITE(*,*)'
                                         "2"= SECOND ORDER'
     WRITE(*,*)'
     CALL SKIP(9)
     READ(*,*,ERR=35) IORDER
     IF(IORDER.NE.1.and.IORDER.NE.2) GOTO 35
     WRITE(*,*)
     CALL SKIP (23)
                  TOTAL VARIABLES= 1+INDEP VAR
     NV=NVAR + 1
                  INPUT DATA
                                   BEGIN STUDENT DATA INPUT'
 40
    WRITE(*,*)'
     WRITE(*,*)
     NOBS=0
 45 DO 80 I=1, NDOBS
    WRITE(*,*)
 50 WRITE(*,55) I
 55 FORMAT(9X, 'HOW MANY TOTAL REPLICATIONS AT POINT #', 12)
     CALL SKIP(2)
     READ(*,*,ERR=50) NREP
     NREP=NOBS+NREP
     DO 65 J=2,NV
       WRITE(*,60) I,J-1
       FORMAT(1X, 'POINT # ',12,'--X',11,' = ')
 60
       READ(*,*,ERR=50) Z(I,J)
       CALL SKIP(2)
 65
      CONTINUE
         DO 75 N=(NOBS+1), NREP
           DO 70 J=2,NV
```

```
X(N,J) = (Z(I,J))
 70
            CONTINUE
              X(N,1)=1.0
              NPT(N) = I
 75
          CONTINUE
         NOBS=NREP
     CALL SKIP(5)
 80
     CONTINUE
     WRITE(*,*)
     WRITE(*,*)
     WRITE(*,*)'
                                        SUMMARY OF DATA INPUT'
     WRITE(*,*)
     WRITE(*,85) NOBS
    FORMAT(17X, 'TOTAL OBSERVATIONS= ', 12)
     WRITE(*,*)
     WRITE(*,*)
     WRITE(*,*)'OB# PT#
                              DUMMY
                                          X1
                                                    X2
                                                               хз',
               X4
     DO 95 I=1, NOBS
       WRITE(*,90) I, NPT(I), (X(I,J),J=1,NV)
 90
       FORMAT(1X, 12, 2X, 12, 2X, 6(2X, F8.3))
       IF(I.EQ.19.OR.I.EQ.38.OR.I.EQ.57) THEN
         WRITE(*,*)
         CALL CONT
       ENDIF
    CONTINUE
     WRITE(*,*)
100 WRITE(*,*)'
                                           IS THIS DATA CORRECT?'
     WRITE(*,*)'
                                              "1"= CORRECT'
     WRITE(*,*)'
                                              "O"= REENTER DATA'
     READ(*,*,ERR=100) IANS
     IF (IANS.EQ.1) GOTO 105
     IF ((IANS.NE.1).AND.(IANS.NE.0)) GOTO 100
     WRITE(*,*)'
                                  PLEASE REENTER YOUR DATA '
     CALL SKIP(15)
     GO TO 20
105
     CONTINUE
                   GENERATE VALUE OF DEPENDENT VARIABLE AT EACH POINT
     DO 120 I=1, NOBS
       DETERMINE DEVIATION
       CALL RANNUM(SEED, RA)
       CALL RANNUM(SEED, RB)
       V=(-2.0*ALOG(RA))**0.5*COS(6.283*RB)
       RNORM=V*(SQRT(EVAR(NSTUD)))
       DEV=RNORM
       IF (RNORM.LT.(-4*SQRT(EVAR(NSTUD)))) THEN
          DEV= -4.0*SQRT(EVAR(NSTUD))
       ENDIF
       IF (RNORM.GT.(4*SQRT(EVAR(NSTUD)))) THEN
          DEV= 4.0*SQRT(EVAR(NSTUD))
       ENDIF
       IF (IDBUG.EQ.1) THEN
          WRITE(6,*)'RA/RB=',RA,RB
          WRITE(6,*)'V=',V
          WRITE(6, *) 'EVAR(NSTUD) = ', EVAR(NSTUD)
          WRITE(6,*)'RNORM= ',RNORM
          WRITE(6,*)'DEV= ',DEV
          WRITE(6,*)
113
         ENDIF
```

```
Y(I)=0
       DO 115 K=1, NVAR
          Y(I)=Y(I)+COEF(NSTUD,K)*X(I,K+1)**2
           +CFORD(NSTUD,K)*X(I,K+1)
115
       CONTINUE
       Y(I)=Y(I)+CIACT(NSTUD,1)*X(I,2)*X(I,3)+
       CIACT(NSTUD, 2) *X(1, 2) *X(1, 4) + CIACT(NSTUD, 3) *X(1, 2) *X(1, 5) +
       CIACT(NSTUD, 4) *X(1,2)*X(1,6)+CIACT(NSTUD,5)*X(1,3)*X(1,4)+
       CIACT(NSTUD, 6) *X(1,3) *X(1,5) +CIACT(NSTUD, 7) *X(1,3) *X(1,6) +
       CIACT(NSTUD, 8) *X(1,4)*X(1,5)+CIACT(NSTUD, 9)*X(1,4)*X(1,6)+
       CIACT(NSTUD, 10) *X(I, 5) *X(I, 6) +CONST(NSTUD) +DEV
     IF (IDBUG.EQ.1) WRITE(6,*) Y(I)
120
     CONTINUE
     CALL SKIP(25)
     WRITE(*,130) (I,Y(I),I=1,NOBS)
130
     FORMAT(15X, 'Y(', I2, ') = ', F18.9)
                   ARRANGE DATA IN ORDER FOR MANIPULATION
     NVS=NV
     IF (IORDER.EQ.2) NVS=2*NVAR+1+ICOM(NVAR)
                   ARRANGEMENT UNNECESSARY FOR FIRST ORDER EQUATION
     IF(IORDER.EQ.1) GOTO 200
     NV1=NVAR+1
     DO 170 J=1, NOBS
       DO 160 K=2, NVAR+1
        JJ=K+NVAR
        X(J,JJ) = X(J,K)**2
160
       CONTINUE
170
     CONTINUE
     DO 180 J=1, NOBS
       KK=2*NVAR+2
       X(J,KK)=X(J,2)*X(J,3)
       IF(NVAR.LT.3) GOTO 180
       KK=KK+1
       X(J,KK)=X(J,2)*X(J,4)
       KK=KK+1
       X(J,KK)=X(J,3)*X(J,4)
       IF(NVAR.LT. 4) GOTO 180
       X(J,KK)=X(J,2)*X(J,5)
       KK=KK+1
       X(J,KK)=X(J,3)*X(J,4)
       KK = KK + 1
       X(J,KK)=X(J,3)*X(J,5)
       KK = KK + 1
       X(J,KK)=X(J,4)*X(J,5)
       IF (NVAR.LT.5) GOTO 180
       KK=KK-2
       X(J,KK)=X(J,2)*X(J,6)
       KK = KK + 1
       X(J,KK)=X(J,3)*X(J,4)
       KK=KK+1
       X(J,KK)=X(J,3)*X(J,5)
       KK=KK+1
       X(J,KK)=X(J,3)*X(J,6)
       KK=KK+1
       X(J,KK)=X(J,4)*X(J,5)
       KK=KK+1
       X(J,KK)=X(J,4)*X(J,6)
```

```
KK=KK+1
        X(J,KK)=X(J,5)*X(J,6)
 180
     CONTINUE
     CONTINUE
200
      WRITE(*,*)'
                                ----REARRANGED INPUT DATA----'
      WRITE(*,*)
      DO 210 I=1, NOBS
        WRITE(*,220) Y(I), NPT(I), (X(I,LL), LL=1, NVS)
        IF(I.EQ.19.OR.I.EQ.38.OR.I.EQ.57) CALL CONT
 210
     CONTINUE
220 FORMAT(1X,F15.8,I2,F7.4,21F11.4)
          WRITE(*,*)
          WRITE(*,*)
          WRITE(*,*)
          CALL CONT
                   BEGIN ANOVA COMPUTATIONS
                   TAKE TRANSPOSE OF MATRIX X, CALL IT MATRIX XT
225
     NCOL=NOBS
     NROW=NVS
     DO 250 J=1,NCOL
       DO 240 I=1, NROW
        XT(I,J)=X(J,I)
240
        CONTINUE
     CONTINUE
250
     IF (IDBUG.EQ.1) THEN
       WRITE(6,*)'
                       -----MATRIX XT----'
       DO 254 I=1,NVS
        WRITE(6,258) (XT(I,LL),LL=1,NOBS)
254
       CONTINUE
258
       FORMAT(1X,50F11.3)
     ENDIF
                   MULTIPLY MATRIX XT * MATRIX X= MATRIX A
259
     IXTCOL=NOBS
     IAROW=NVS
     IACOL=NVS
     DO 280 I=1, IAROW
       DO 270 J=1, IACOL
         A(I,J)=0.0
         DO 260 K=1,IXTCOL
           A(I,J) = A(I,J) + XT(I,K)*X(K,J)
260
         CONTINUE
270
       CONTINUE
280
     CONTINUE
     IF (IDBUG. EQ. 1) THEN
       WRITE(6, *)'
                        ----MATRIX XT*X = MATRIX A----'
       DO 290 I=1,NVS
         WRITE(6,300) (A(I,J),J=1,NVS)
290
       CONTINUE
       FORMAT(1X,50F13.5)
300
     ENDIF
                   MULTIPLY MATRIX XT * MATRIX Y= MATRIX G
305 IXTCOL=NOBS
```

```
IGROW=NVS
      DO 320 I=1, IGROW
        G(I) = 0.0
        DO 310 K=1, IXTCOL
          G(I)=G(I) + XT(I,K)*Y(K)
 310
        CONTINUE
 320
      CONTINUE
      IF(IDBUG.EQ.1) THEN
                        ----MATRIX XT*Y = MATRIX G----'
        WRITE(6,*)'
        DO 330 I=1,NVS
          WRITE(6,340) G(I)
 330
        CONTINUE
 340
        FORMAT(1X,F13.5)
      ENDIF
                    TAKE INVERSE OF MATRIX A = XT*X
 345
      DO 360 I=1, NVS
        DO 350 J=1, NVS
          AA(I,J)=A(I,J)
 350
        CONTINUE
 360
      CONTINUE
                    SET SIZE OF AINV(I,J) TO THAT OF AA(I,J)
*
      DO 380 I=1, NVS
        DO 370 J=1, NVS
          IF (I.EQ.J) THEN
            AINV(I,J) = 1.0
          ELSE
            AINV(I,J) = 0.0
          ENDIF
370
        CONTINUE
380
      CONTINUE
                    INVERT MATRIX USING ROW OPERATIONS
      DO 420 I=1,NVS
        CON= AA(I,I)
        IF (CON.EQ.O) THEN
          WRITE(*,*)'
                                    ZERO ON DIAGONAL'
          WRITE(*,*)'
                                    RECHECK EXPERIMENTAL DESIGN'
          WRITE(*,*)
          STOP
        ENDIF
        DO 390 J=1,NVS
          AA(I,J) = AA(I,J)/CON
          AINV(I,J) = AINV(I,J)/CON
390
        CONTINUE
        DO 410 K=1, NVS
          VAL= AA(K,I)
          IF (K.NE.I) THEN
            DO 400 J=1,NVS
              AA(K,J) = (AA(K,J) - AA(I,J)*VAL)
              AINV(K,J) = (AINV(K,J) - AINV(I,J) * VAL)
400
            CONTINUE
          ENDIF
410
        CONTINUE
420
     CONTINUE
```

```
PRINT INVERSE OF MATRIX A= AINV
     IF(IDBUG.EQ.1) THEN
       WRITE(6,*)'
                       ----MATRIX AINV = INVERSE OF MATRIX A----'
       DO 430 I=1,NVS
         WRITE(6,440) (AINV(I,J),J=1,NVS)
430
       CONTINUE
440
       FORMAT(1X, 25F20.5)
     ENDIF
                   SEE THAT MATRIX AINV*A = DIAGONAL MATRIX
     DO 47C I=1, NVS
445
       DO 460 J=1,NVS
         TEST(I,J)=0.0
         DO 450 K=1, NVS
           TEST(I,J) = TEST(I,J) + A(I,K)*AINV(K,J)
           IF (TEST(I,J).LT.1.0E-06.AND.TEST(I,J).GT.-1.0E-06)
           TEST(I,J)=0.0
450
         CONTINUE
460
       CONTINUE
     CONTINUE
470
     IF(IDBUG.EQ.1) THEN
                       ----MATRIX A*AINV = MATRIX TEST----'
       WRITE(6,*)'
       DO 480 I=1,NVS
         WRITE(6,490) (TEST(I,J),J=1,NVS)
480
       CONTINUE
490
       FORMAT(1X,50F22.5)
     ENDIF
                MULTIPLY MATRIX AINV*G= MATRIX B(COEFFICIENT MATRIX)
     DO 520 I=1,NVS
       B(I) = 0.0
       DO 500 K=1,NVS
         B(I) = B(I) + AINV(I,K)*G(K)
500
       CONTINUE
520
     CONTINUE
     IF(IDBUG.EQ.1) THEN
       WRITE(6,*)'
                    ----MATRIX AINV*G = MATRIX B(COEFFICIENT)----'
       DO 530 I=0, NVS-1
         WRITE(6,540) I,B(I+1)
530
       CONTINUE
540
       FORMAT(11X, 'B', I2, '=', F16.5)
     ENDIF
                   SS(1) = TOT SS IDEF(1) = DF TOT
                   SS(2)=Bo SS
                   SET #VARIABLES BACK TO NV
545
      NV=NVS
     TEESS=0.0D0
     IDEF(NV+4)=0
     COUNT=0.0
     SS(1) = 0.0D0
     DO 600 I=1, NOBS
       SS(1)=Y(I)**2 + SS(1)
600
    CONTINUE
     IDEF(1)=NOBS
     IDEF(2)=1
```

```
SS(2) = (G(1)**2)/NOBS
      DO 610 I=2,NV
         IF (IDBUG.EQ.1) WRITE(6,*) 'A(',I,',',I,')=',A(I,I)
         SS(I+1) = (B(I)**2)/AINV(I,I)
         IDEF(I+1)=1
 610 CONTINUE
      IF (IDBUG.EQ.1) THEN
        WRITE(6,*)'SS(1)=',SS(1)
WRITE(6,*)'DF(1)=',IDEF(1)
        WRITE(6,*)'SS(2)=',SS(2)
        WRITE(6,*)'DF(2)=',IDEF(2)
        DO 615 I=2,NV
          WRITE(6,*) 'SS', I+1,'= ', SS(I+1)
WRITE(6,*) 'DF', I+1,'= ', IDEF(I+1)
615
        CONTINUE
      ENDIF
      TT = 0.0D0
      KK=NV+1
      K=NV+2
      IF (IORDER.EQ.2) GOTO 640
                     SUM SS FOR ALL VARIABLES
      DO 630 I=2,NV+1
        TT=TT + SS(I)
630
      CONTINUE
                    CALC SS RESIDUAL
      SS(K) = SS(1) - TT
      GO TO 680
640
      SSR= 0.0D0
      DO 670 I=2,NV
        SUM= 0.0D0
        DO 650 J=1, NOBS
          SUM=SUM + X(J,I)
650
        CONTINUE
        SUM=SUM/NOBS
        SAM=0.0D0
        DO 660 J=1, NOBS
          SAM=SAM + (X(J,I)-SUM)*Y(J)
660
        CONTINUE
        SSR=SSR+SAM*B(I)
670 CONTINUE
     SSR = SS(1) - SS(2) - SSR
     SS(NV+2) = SSR
     EESS=0.0D0
     ESS=0.0D0
680
     CONTINUE
     DO 700 I=1, NDOBS
        DO 690 J=1, NOBS
          IF (NPT(J).EQ.I) THEN
            EESS = Y(J) **2 + EESS
            ESS = Y(J) + ESS
            COUNT=COUNT+1
          ENDIF
690
        CONTINUE
            TEESS=(EESS-ESS**2/COUNT) + TEESS
            IDEF(NV+4) = IDEF(NV+4) + (COUNT-1)
          COUNT=0
          EESS=0.0D0
          ESS=0.0D0
```

```
700
     CONTINUE
                     SS(NV+4) - SS ERROR
      SS(NV+4) = TEESS
                     SS(NV+3) - SS LOF
      SS(NV+3) = SS(NV+2) - SS(NV+4)
      IDEF(NV+2) = IDEF(1)-NV
      IDEF(NV+3) = IDEF(NV+2) - IDEF(NV+4)
     KN=NV+4
      IJLM=0
      IF(IDEF(NV+2).LT.1.OR.IDEF(NV+3).LT.1.OR.IDEF(NV+4).LT.1)IJLM=1
      DO 710 I=1,KN
        TMS(I) = SS(I) / IDEF(I)
710
     CONTINUE
      ISKIP=0
      IF(TMS(K).NE.O) GOTO 720
      ISKIP=1
      TMS(NV+2) = SSR
720
     CONTINUE
      DO 730 I≈1,KN
        FRATIO(I)=TMS(I)/TMS(KN)
730
     CONTINUE
      CALL SKIP(25)
      WRITE(*,740)
     FORMAT(1x, 20x, 'ANALYSIS OF VARIANCE TABLE', /)
740
      WRITE(*,750)
750
     FORMAT(3X, 'SOURCE',7X,'DF',8X,'SS',13X,'MS',11X,'F-RATIO',6X,
     +'COEFFICIENT',/)
      IF (IORDER.EQ.2) GOTO 820
     WRITE(*,760) IDEF(1),SS(1),TMS(1)
     FORMAT(3X,'TOTAL
760
                          ',5X,13,1X,E14.7,1X,E14.7)
      DO 770 I=2,NV+1
        J=I-1
        IF(I.EQ.2) WRITE(*,772) IDEF(I),SS(I),TMS(I),FRATIO(I),B(J)
        IF(I.EQ.3) WRITE(*,773) IDEF(I),SS(I),TMS(I),FRATIO(I),B(J)
        IF(I.EQ.4) WRITE(*,774) IDEF(I),SS(I),TMS(I),FRATIO(I),B(J)
        IF(I.EQ.5) WRITE(*,775) IDEF(I),SS(I),TMS(I),FRATIO(I),B(J)
        IF(I.EQ.6) WRITE(*,776) IDEF(I),SS(I),TMS(I),FRATIO(I),B(J)
        IF(I.EQ.7) WRITE(*,777) IDEF(I),SS(I),TMS(I),FRATIO(I),B(J)
770
     CONTINUE
772
     FORMAT(3X, 'DUE TO 80', 3X, 13, 1X, E14.7, 1X, E14.7, 1X, E14.7, 1X, E14.7)
     FORMAT(3X, 'DUE TO B1', 3X, I3, 1X, E14.7, 1X, E14.7, 1X, E14.7, 1X, E14.7)
FORMAT(3X, 'DUE TO B2', 3X, I3, 1X, E14.7, 1X, E14.7, 1X, E14.7, 1X, E14.7)
773
774
     FORMAT(3X, 'DUE TO B3', 3X, I3, 1X, E14.7, 1X, E14.7, 1X, E14.7, 1X, E14.7)
FORMAT(3X, 'DUE TO B4', 3X, I3, 1X, E14.7, 1X, E14.7, 1X, E14.7, 1X, E14.7)
775
776
777
     FORMAT(3X, DUE TO B5',3X,13,1X,E14.7,1X,E14.7,1X,E14.7,1X,E14.7)
     K=NV+2
     WRITE(*,790) IDEF(K),SS(K),TMS(K)
     FORMAL(3X, 'RESIDUAL ', 3X, I3, 1X, E14.7, 1X, E14.7)
     IF(ISKIP.EQ.1) GOTO 935
     K=NV+3
     WRITE(*,800) IDEF(K), SS(K), TMS(K), FRATIO(K)
800
     FORMAT(4X, 'LACK OF FIT', 1X, I3, 0X, E14.7, 1X, E14.7, 1X, E14.7)
     K=NV+4
     WRITE(*,810) IDEF(K),SS(K),TMS(K)
     FORMAT(4X, 'ERROR
                               ',1X,13,0X,E14.7,1X,E14.7)
810
     GO TO 945
```

```
820
      K=1
      WRITE(*,900) IDEF(K),SS(K),TMS(K)
      K=K+1
      WRITE(*,901) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
      K=K+1
      WRITE(*,902) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
      IF(NVAR.EQ.1) GOTO 840
      K=K+1
      WRITE(*,903) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
      IF(NVAR.EQ.2) GOTO 840
      K=K+1
      WRITE(*,904) IDEF(K), SS(K), TMS(K), FRATIO(K), B(K-1)
      IF(NVAR.EQ.3) GOTO 840
      K=K+1
      WRITE(*,905) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
      IF(NVAR.EQ.4) GOTO 840
      K=K+1
      WRITE(*,906) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
 840 K=K+1
      WRITE(*,907) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
      IF(NVAR.EQ.1) GOTO 880
      K=K+1
      WRITE(*,908) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
      IF(NVAR.EQ.2) GOTO 850
      K=K+1
      WRITE(*,909) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
      IF(NVAR.EQ.3) GOTO 850
      K=K+1
      WRITE(*,910) IDEF(K), SS(K), TMS(K), FRATIO(K), B(K-1)
      IF(NVAR.EQ.4) GOTO 850
      K=K+1
      WRITE(*,911) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
850 K=K+1
     WRITE(*,912) IDEF(K), SS(K), TMS(K), FRATIO(K), B(K-1)
     IF(NVAR.EQ.2) GOTO 880
     K=K+1
     WRITE(*,913) IDEF(K), SS(K), TMS(K), FRATIO(K), B(K-1)
     IF(NVAR.EQ.3) GOTO 860
     K=K+1
     WRITE(*,914) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
     IF(NVAR.EQ.4) GOTO 860
     K = K + 1
     WRITE(*,915) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
860 K=K+1
     WRITE(*,916) IDEF(K), SS(K), TMS(K), FRATIO(K), B(K-1)
     IF(NVAR.EQ.3) GOTO 880
     K=K+1
     WRITE(*,917) IDEF(K), SS(K), TMS(K), FRATIO(K), B(K-1)
     IF(NVAR.EQ.4) GOTO 870
     K=K+1
     WRITE(*,918) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
     WRITE(*,919) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
     IF(NVAR.EQ.4) GOTO 880
     K=K+1
     WRITE(*,920) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
     K=K+1
     WRITE(*,921) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
880
    K=K+1
     WRITE(*,922) IDEF(K),SS(K),TMS(K)
     K=K+1
     IF(ISKIP.EQ.1) GOTO 935
```

```
WRITE(*,923) IDEF(K),SS(K),TMS(K),FRATIO(K)
     K=K+1
     WRITE(*,924) IDEF(K),SS(K),TMS(K)
900 FORMAT(3X, 'TOTAL
                          ',5X,I3,1X,E14.7,1X,E14.7)
     FORMAT(3X, 'DUE TO BO', 3X, I3, 1X, E14.7, 1X, E14.7, 1X, E14.7, 1X, E14.7)
901
     FORMAT(3X, DUE TO B1', 3X, I3, IX, E14.7, IX, E14.7, IX, E14.7, IX, E14.7)
902
     FORMAT(3X, 'DUE TO B2', 3X, I3, 1X, E14.7, 1X, E14.7, 1X, E14.7, 1X, E14.7)
903
     FORMAT(3X, DUE TO B3', 3X, I3, 1X, E14.7, 1X, E14.7, 1X, E14.7, 1X, E14.7)
904
905
     FORMAT(3X, 'DUE TO B4', 3X, I3, 1X, E14.7, 1X, E14.7, 1X, E14.7, 1X, E14.7)
     FORMAT(3X, 'DUE TO B5', 3X, I3, 1X, E14.7, 1X, E14.7, 1X, E14.7, 1X, E14.7)
906
     FORMAT(3X, 'DUE TO B11', 2X, I3, 1X, E14.7, 1X, E14.7, 1X, E14.7, 1X,
907
    +E14.7)
908
    FORMAT(3X, 'DUE TO B22', 2X, I3, 1X, E14.7, 1X, E14.7, 1X, E14.7, 1X,
    +E14.7)
909
    FORMAT(3X,'DUE TO B33',2X,I3,1X,E14.7,1X,E14.7,1X,E14.7,1X,
    +E14.7)
910 FORMAT(3X, 'DUE TO $44',2X, I3, 1X, E14.7, 1X, E14.7, 1X, E14.7, 1X,
    +E14.71
911 FORMAT(3X, 'DUE TO 855', 2X, I3, 1X, E14.7, 1X, E14.7, 1X, E14.7, 1X,
     +E14.7)
    FORMAT(3X, 'DUE TO B12', 2X, I3, 1X, E14.7, 1X, E14.7, 1X, E14.7, 1X,
    +E14.7)
913 FORMAT(3X, 'DUE TO $13',2X,13,1X,E14.7,1X,E14.7,1X,E14.7,1X,
    +E14.7)
    FORMAT(3X, 'DUE TO B14', 2X, I3, 1X, E14.7, 1X, E14.7, 1X, E14.7, 1X,
    +E14.7)
    FORMAT(3X, 'DUE TO $15',2X,13,1X,E14.7,1X,E14.7,1X,E14.7,1X,
    +E14.71
     FORMAT(3x, 'DUE TO B23', 2x, I3, 1x, E14.7, 1x, E14.7, 1x, E14.7, 1x,
    +E14.7)
917
    FORMAT(3X, 'DUE TO B24', 2X, I3, 1X, E14.7, 1X, E14.7, 1X, E14.7, 1X,
    +E14.7)
918
    FORMAT(3X, 'DUE TO \( \beta 25', 2X, I3, 1X, E14.7, 1X, E14.7, 1X, E14.7, 1X, \)
    +E14.71
    FORMAT(3X, 'DUE TO \(\beta\)34',2X,I3,1X,E14.7,1X,E14.7,1X,E14.7,1X,
    +E14.7)
920 FORMAT(3X, 'DUE TO \( \beta 35', 2X, I3, 1X, E14.7, 1X, E14.7, 1X, E14.7, 1X,
    +E14.7)
921 FORMAT(3X, 'DUE TO B45', 2X, I3, 1X, E14.7, 1X, E14.7, 1X, E14.7, 1X,
     +E14.7)
922
    FORMAT(3X, 'RESIDUAL', 3X, 13, 1X, E14.7, 1X, E14.7)
     FORMAT(4X, 'LACK OF FIT', 1X, I3, 0X, E14.7, 1X, E14.7, 1X, E14.7)
923
     FORMAT (4X, 'ERROR
                              ',1X,13,0X,E14.7,1X,E14.7,//)
924
     IF(IJLM.EQ.1) WRITE(*,930)
930
     FORMAT(//,10X,'NOT ENOUGH POINTS TO ESTIMATE ALL PARAMETERS')
     GOTO 945
935
     WRITE(*,940)
     FORMAT(//,10X,'**EXPERIMENT INSUFFICIENT TO ESTIMATE LACK OF FIT
940
    +AND EXPERIMENTAL ERROR')
945
     CONTINUE
     WRITE(*,*)
     CALL CONT
     YDTOTAL=0.0D0
947
     DO 960 K=1, NOBS
       YF(K)=0.0D0
       DO 950 I=1,NVS
          YF(K)=YF(K)+B(I)*X(K,I)
950
        CONTINUE
       YD(K)=Y(K)-YF(K)
       YDSQ(K)=YD(K)**2
       YDTOTAL=YDTOTAL + YDSQ(K)
```

```
960 CONTINUE
     CALL SKIP(5)
     WRITE(*,970)
970 FORMAT(5x, 'POINT', 3x, 'GENERATED', 7x, 'FORECASTED', 6x,
    +'DIFFERENCE', 6X, 'DIFF SQUARED')
     DO 975 K=1, NOBS
       WRITE(*,980) NPT(K),Y(K),YF(K),YD(K),YDSQ(K)
       IF(K.EQ.19.OR.K.EQ.38.OR.K.EQ.57) CALL CONT
975
     CONTINUE
     FORMAT(5X,12,3X,E14.7,2X,E14.7,2X,E14.7,2X,E14.7)
980
     WRITE(*,981) YDTOTAL
     FORMAT(30X, 'SUM OF SQUARED DIFFERENCES= ',E14.7)
981
     CALL SKIP(2)
                    DO YOU WANT PRINTED COPY OF RESULTS?'
985
     WRITE(*,*)
     WRITE(*,*)
     WRITE(*,*)'
                    YOU MUST PUT PRINTER ON LINE FOR PRINTED RESULTS'
     CALL SKIP(3)
                             HARD COPY=1
                                            SCREEN ONLY=0'
     WRITE(*,*)
     READ(*,3,ERR=985) ILIST
     CALL SKIP(24)
     IF(ILIST.EQ.1) THEN
       WRITE(6,*)
                     NAME: ', NAME
       WRITE(6,*)
       WRITE(6,990) NSTUD
990
       FORMAT(3X, 'SURFACE NUMBER: ',12)
       WRITE(6,*)
       WRITE(6,*)'
                                 ----REARRANGED INPUT DATA----'
       WRITE(6,*)
       DO 995 I=1, NOBS
         WRITE(6,1000) Y(I), NPT(I), (X(I,LL), LL=1, NV)
995
       CONTINUE
1000
       FORMAT(1X,F15.8,I2,F7.4,21F11.4)
     ENDIF
                   PRINT COPY OF MATRIX B(COEFFICIENTS)
     IF(ILIST.EQ.1) THEN
     WRITE(6,*)
     WRITE(6,*)
     WRITE(6,*)
     WRITE(6,740)
     WRITE(6,750)
     IF (IORDER.EQ.2) GOTO 1820
     WRITE(6,760) IDEF(1),SS(1),TMS(1)
     DO 1770 I=2,NV+1
       J=I-1
       IF(I.EQ.2) WRITE(6,772) IDEF(I),SS(I),TMS(I),FRATIO(I),B(J)
       IF(I.EQ.3) WRITE(6,773) IDEF(I),SS(I),TMS(I),FRATIO(I),B(J)
       IF(I.EQ.4) WRITE(6,774) IDEF(I),SS(I),TMS(I),FRATIO(I),B(J)
IF(I.EQ.5) WRITE(6,775) IDEF(I),SS(I),TMS(I),FRATIO(I),B(J)
       IF(I.EQ.6) WRITE(6,776) IDEF(I), SS(I), TMS(I), FRATIO(I), B(J)
       IF(I.EQ.7) WRITE(6,777) IDEF(I),SS(I),TMS(I),FRATIO(I),B(J)
1770 CONTINUE
     K=NV+2
     WRITE(6,790) IDEF(K),SS(K),TMS(K)
     IF(ISKIP.EQ.1) GOTO 1935
     K=NV+3
     WRITE(6,800) IDEF(K), SS(K), TMS(K), FRATIO(K)
     K=NV+4
```

```
WRITE(6,810) IDEF(K),SS(K),TMS(K)
        GO TO 1945
  1820 K=1
       WRITE(6,900) IDEF(K),SS(K),TMS(K)
        K=K+1
       WRITE(6,901) IDEF(K), SS(K), TMS(K), FRATIO(K), B(K-1)
       K=K+1
       WRITE(6,902) IDEF(K), SS(K), TMS(K), FRATIO(K), B(K-1)
       IF(NVAR.EQ.1) GOTO 1840
       K=K+1
       WRITE(6,903) IDEF(K), SS(K), TMS(K), FRATIO(K), B(K-1)
       IF(NVAR.EQ.2) GOTO 1840
       K=K+1
       WRITE(6,904) IDEF(K), SS(K), TMS(K), FRATIO(K), B(K-1)
       IF(NVAR.EQ.3) GOTO 1840
       K=K+1
       WRITE(6,905) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
       IF(NVAR.EQ.4) GOTO 1840
       K=K+1
       WRITE(6,906) IDEF(K), SS(K), TMS(K), FRATIO(K), B(K-1)
1840 K=K+1
       WRITE(6,907) IDEF(K), SS(K), TMS(K), FRATIO(K), B(K-1)
       IF(NVAR.EQ.1) GOTO 1880
       K=K+1
       WRITE(6,908) IDEF(K), SS(K), TMS(K), FRATIO(K), B(K-1)
       IF(NVAR.EQ.2) GOTO 1850
       K=K+1
       WRITE(6,909) IDEF(K), SS(K), TMS(K), FRATIO(K), B(K-1)
       IF(NVAR.EQ.3) GOTO 1850
       K=K+1
       WRITE(6,910) IDEF(K), SS(K), TMS(K), FRATIO(K), B(K-1)
       IF(NVAR.EQ.4) GOTO 1850
       K=K+1
       WRITE(6,911) IDEF(K), SS(K), TMS(K), FRATIO(K), B(K-1)
1850 K=K+1
       WRITE(6,912) IDEF(K), SS(K), TMS(K), FRATIO(K), B(K-1)
       IF(NVAR.EQ.2) GOTO 1880
       K=K+1
       WRITE(6,913) IDEF(K), SS(K), TMS(K), FRATIO(K), B(K-1)
       IF(NVAR.EQ.3) GOTO 1860
       K=K+1
       WRITE(6,914) IDEF(K), SS(K), TMS(K), FRATIO(K), B(K-1)
       IF(NVAR.EQ.4) GOTO 1860
       K=K+1
       WRITE(6,915) IDEF(K), SS(K), TMS(K), FRATIO(K), B(K-1)
1860 K=K+1
       \mathtt{WRITE}(6,916) \ \mathtt{IDEF}(\mathtt{K}), \mathtt{SS}(\mathtt{K}), \mathtt{TMS}(\mathtt{K}), \mathtt{FRATIO}(\mathtt{K}), \mathtt{B}(\mathtt{K}-1)
       IF(NVAR.EQ.3) GOTO 1880
       K=K+1
       WRITE(6,917) IDEF(K), SS(K), TMS(K), FRATIO(K), B(K-1)
       IF(NVAR.EQ.4) GOTO 1870
      K=K+1
      WRITE(6,918) IDEF(K), SS(K), TMS(K), FRATIO(K), B(K-1)
1870
      K=K+1
      WRITE(6,919) IDEF(K), SS(K), TMS(K), FRATIO(K), B(K-1)
      IF(NVAR.EQ.4) GOTO 1880
      K=K+1
      WRITE(6,920) IDEF(K), SS(K), TMS(K), FRATIO(K), B(K-1)
      K=K+1
      WRITE(6,921) IDEF(K), SS(K), TMS(K), FRATIO(K), B(K-1)
1880
     K=K+1
      WRITE(6,922) IDEF(K), SS(K), TMS(K)
```

```
K=K+1
      IF(ISKIP.EQ.1) GOTO 1935
      WRITE(6,923) IDEF(K), SS(K), TMS(K), FRATIO(K)
      K=K+1
      WRITE(6,924) IDEF(K), SS(K), TMS(K)
      IF(IJLM.EQ.1) WRITE(*,930)
      GOTO 1945
1935 WRITE(6,940)
1945 CONTINUE
      WRITE(6,*)
      WRITE(6,*)
      WRITE(6,*)
      WRITE(6,*)
      WRITE(6,1970)
1970 FORMAT (5x, 'POINT', 3x, 'GENERATED', 7x, 'FORECASTED', 6x, 'DIFFERENCE'
     +,6X,'DIFF SQUARED')
      WRITE(6,*)
      DO 1975 K=1, NOBS
        WRITE (6,1980) NPT (K), Y(K), YF(K), YD(K), YDSQ(K)
1975 CONTINUE
1980 FORMAT(5X, I2, 3X, E14.7, 2X, E14.7, 2X, E14.7, 2X, E14.7)
      WRITE(6,*)
      WRITE(6, *)
      WRITE(6,1985) YDTOTAL
1985 FORMAT(30X, 'SUM OF SQUARED DIFFERENCES= ',E14.7)
      WRITE(6,*)
      ENDIF
      WRITE(*,*)
      WRITE(*,*)
1990 WRITE(* ')'
                            DO YOU WANT TO PERFORM ANOTHER ITERATION?'
      WRITE(* *)
      WRITE(*,*)'
                                               "1"= CONTINUE'
                                               "0"= STOP'
      WRITE(*,*)'
      CALL SKIP(9)
      READ(*,*,ERR=1990) IANS
      IF (IANS.EQ.1) GOTO 30
      IF (IANS.NE.0) GOTO 1990
       STOP
      END
                   RANDOM NUMBER SUBROUTINE
      SUBROUTINE RANNUM(SEED, RRAN)
      REAL*8 PROD, SEMI, SEED
      PROD=(16807.D0*SEED)
      SEMI=DMOD(PROD, 2147483647.D0)
      RRAN=SEMI * .4656613E-9
      SEED=SEMI
      RETURN
      END
                   SUBROUTINE SKIP-- PRINTS 'N' BLANK LINES
      SUBROUTINE SKIP(N)
      DO 10 I=1,N
         WRITE(*,*)' '
     CONTINUE
      RETURN
      END
```

SUBROUTINE CONT- HALT EXECUTION UNTIL USER READY

SUBROUTINE CONT
CHARACTER*1 ANS, BLK
DATA BLK/''/
ANS=BLK
WRITE(*,1)
1 FORMAT(/,'
READ(*,2) ANS
2 FORMAT(A1)

To continue, press RETURN key')

FUNCTION ICOM(NVAR)
GO TO (1,2,3,4,5), NVAR

1 ICOM=0

RETURN END

- RETURN 2 ICOM=1
- 2 ICOM=1 RETURN
- 3 ICOM=3
- RETURN
- 4 ICOM=6 RETURN
- 5 ICOM=10 RETURN END

APPENDIX C- CRIT. EXE PROGRAM LISTING

```
-----PROGRAM- CRIT.FOR-----
                                       WRITTEN BY JIM TREHARNE
                                       MARCH 11, 1991
      THIS PROGRAM IS USED FOR THREE PURPOSES:
        1- CALCULATE CRITICAL VALUES OF THE SECOND ORDER EQUATION
        2- ESTIMATE THE MAX/MIN VALUE OF THE DEPENDENT VARIABLE
        3- PROVIDE DATA TO MAP RESPONSE CONTOURS
    PROGRAM CRIT
    DOUBLE PRECISION A(5,5),R(5),COEF(5),CIACT(10),CFORD(5),CONST,
                      X(5), AINV(5,5), TEST(5,5), Y, CONTOUR, RITE(5),
                      CHECK, Z(5), T(5), P, PO, D, VMIN(5), VMAX(5), DELTA(5)
    INTEGER NSTUD, NVAR, ILIST
    CHARACTER NAME*25
                 DEFINITION OF VARIABLES
      A(5,5)- MATRIX USED TO SOLVE FOR INDEPENDENT VARIABLES
      R(5) - USED IN MATRIX INVERSION
      COEF(5) - COEFFICIENTS OF HIGHER ORDER TERMS
      CIACT(10) - COEFFICIENTS OF THE INTERACTION TERMS
      CFORD(5) - COEFFICIENTS OF FIRST ORDER TERMS
      CONST(5) - CONSTANT TERM
      X(5) - OPTIMAL VALUES OF THE INDEPENDENT VARIABLES
      AINV(5) - INVERSE MATRIX TO SOLVE FOR OPTIMAL VALUES
      TEST(5,5)- USED TO VERIFY INVERSE MATRIX IN DEBUGGING
      Y- RESPONSE VARIABLE
      CONTOUR- VALUE AT WHICH DATA FOR CONTOUR IS DESIRED
      RITE(5) - RIGHT SIDE COEFFICIENTS
      VMIN(5) - MINIMUM VALUE OF VARIABLE USED TO MAP CONTOUR
      VMAX(5) - MAXIMUM VALUE OF VARIABLE USED TO MAP CONTOUR
      DELTA(5) - USED IN GETTING DATA TO MAP CONTOUR
      CHECK- USED TO PLOT CONTOUR DATA
      Z(5)- USED TO PLOT CONTOUR DATA
      T(5) - USED TO INVERT MATRIX
      P- PIVOT VALUE USED IN MATRIX INVERSION
      PO- 1/P
      D- VALUE OF DETERMINANT USED IN DEBUGGING
      NSTUD- STUDENT/SURFACE NUMBER
      NVAR- NUMBER OF INDEPENDENT VARIABLES
      ILIST- USED TO DETERMINE IF PRINTOUT DESIRED
                 OPEN PRINTER AS FILE #6
   OPEN(6, FILE='PRN', STATUS='NEW')
                 SCREEN START UP INFORMATION
   CALL SKIP(10)
   WRITE(*,10)
10 FORMAT(17X, 'WELCOME TO THE CRIT PROGRAM')
```

```
CALL SKIP(2)
     WRITE(*,*)'
                        This program is used in conjunction with the'
     WRITE(*,*)
                        main program entitled RSM.FOR. This program'
     WRITE(*,*)'
     WRITE(*,*)
                        will perform three functions:'
     WRITE(*,*)'
     WRITE(*,*)
     WRITE(*,*)
                          1- Calculate Critical Values of the Second'
     WRITE(*,*)'
     WRITE(*,*)'
                             Order Equation'
     WRITE(*,*)
                          2- Estimate the Max/Min Value of the '
     WRITE(*,*)'
     WRITE(*,*)'
                             Dependent Variable'
     WRITE(*,*)
     WRITE(*,*)'
                          3- Provide Data to Map Response Contours'
     WRITE(*,*)
     WRITE(*,*)
     CALL SKIP(1)
     CALL CONT
 20 CALL SKIP(23)
 30 WRITE(*,*)'
                                     PLEASE ENTER YOUR NAME'
     CALL SKIP(12)
     READ(*,40,ERR=30) NAME
 40 FORMAT(A25)
     CALL SKIP(13)
                  INITIALIZE VARIABLES
                  IDBUG=0.0 FOR FINAL PROGRAM
 50 IDBUG=0.0
     NSTUD=0
     Y=0.0D0
     NVAR=0
    ILIST=0
     CONST=0
     DO 70 I=1,5
      DO 60 J=1,5
         A(I,J)=0
 60
       CONTINUE
       R(I)=0
       COEF(I)=0
       CFORD(I)=0
 70 CONTINUE
     DO 80 I=1,10
      CIACT(I)=0
 80 CONTINUE
 90 WRITE(*,*)'
                   WHAT SURFACE NUMBER ARE YOU WORKING WITH [1-15] ?'
     CALL SKIP(12)
     READ(*,100,ERR=90) NSTUD
100 FORMAT(12)
                              HOW MANY INDEPENDENT VARIABLES [1-5] ?'
110 WRITE(*,*)'
```

```
CALL SKIP(12)
     READ(*,120,ERR=110) NVAR
120 FORMAT(12)
     CALL SKIP(24)
     DO 150 I=1,NVAR
       WRITE(*,140) I,I
130
140
       FORMAT(19X, 'WHAT IS THE VALUE OF B', I1, I1, '?')
       CALL SKIP(3)
       READ(*, *, ERR=130) COEF(I)
150 CONTINUE
     CALL SKIP(24)
     IF(NVAR.EQ.2) THEN
                                      WHAT IS THE VALUE OF $12'
160
       WRITE(*,*)'
       CALL SKIP(3)
       READ(*,*,ERR=160) CIACT(1)
     ENDIF
     CALL SKIP(24)
     IF(NVAR.EQ.3) THEN
       WRITE(*,*)'
                                      WHAT IS THE VALUE OF B12'
170
       CALL SKIP(3)
       READ(*,*,ERR=170) CIACT(1)
       CALL SKIP(3)
180
       WRITE(*,*)'
                                      WHAT IS THE VALUE OF B13'
       CALL SKIP(3)
       READ(*,*,ERR=180) CIACT(2)
190
       WRITE(*,*)'
                                      WHAT IS THE VALUE OF B23'
       CALL SKIP(3)
       READ(*,*,ERR=190) CIACT(5)
       CALL SKIP(24)
     ENDIF
     IF(NVAR.EQ.4) THEN
200
                                      WHAT IS THE VALUE OF B12'
       WRITE(*,*)'
       CALL SKIP(3)
       READ(*,*,ERR=200) CIACT(1)
       CALL SKIP(3)
210
       WRITE(*,*)'
                                      WHAT IS THE VALUE OF $13'
       CALL SKIP(3)
       READ(*,*,ERR=210) CIACT(2)
220
       WRITE(*,*)'
                                      WHAT IS THE VALUE OF B14'
       CALL SKIP(3)
       READ(*,*,ERR=220) CIACT(3)
                                      WHAT IS THE VALUE OF B23'
230
       WRITE(*,*)'
       CALL SKIP(3)
       READ(*,*,ERR=230) CIACT(5)
240
       WRITE(*,*)'
                                      WHAT IS THE VALUE OF B24'
       CALL SKIP(3)
       READ(*,*,ERR=240) CIACT(6)
250
       WRITE(*,*)'
                                      WHAT IS THE VALUE OF B34'
       CALL SKIP(3)
```

```
READ(*,*,ERR=250) CIACT(8)
       CALL SKIP(24)
     ENDIF
     IF(NVAR.EQ.5) THEN
                                      WHAT IS THE VALUE OF B12'
260
       WRITE(*,*)'
       CALL SKIP(3)
       READ(*,*,ERR=260) CIACT(1)
       CALL SKIP(3)
                                      WHAT IS THE VALUE OF $13'
270
       WRITE(*,*)'
       CALL SKIP(3)
       READ(*,*,ERR=270) CIACT(2)
                                      WHAT IS THE VALUE OF B14'
280
       WRITE(*,*)'
       CALL SKIP(3)
       READ(*,*,ERR=280) CIACT(3)
290
                                      WHAT IS THE VALUE OF B15'
       WRITE(*,*)'
       CALL SKIP(3)
       READ(*,*,ERR=290) CIACT(4)
300
       WRITE(*,*)'
                                      WHAT IS THE VALUE OF B23'
       CALL SKIP(3)
       READ(*,*,ERR=300) CIACT(5)
                                      WHAT IS THE VALUE OF B24'
310
       WRITE(*,*)'
       CALL SKIP(3)
       READ(*,*,ERR=310) CIACT(6)
                                      WHAT IS THE VALUE OF $25'
320
       WRITE(*,*)'
       CALL SKIP(3)
       READ(*,*,ERR=320) CIACT(7)
                                      WHAT IS THE VALUE OF B34'
330
       WRITE(*,*)'
       CALL SKIP(3)
       READ(*,*,ERR=330) CIACT(8)
340
                                      WHAT IS THE VALUE OF $35'
       WRITE(*,*)'
       CALL SKIP(3)
       READ(*,*,ERR=340) CIACT(9)
                                      WHAT IS THE VALUE OF B45'
350
       WRITE(*,*)'
       CALL SKIP(3)
       READ(*,*,ERR=350) CIACT(10)
       CALL SKIP(24)
     ENDIF
     DO 380 I=1, NVAR
360
       WRITE(*,370) I
370
       FORMAT(19X, 'WHAT IS THE VALUE OF B', I1' ?')
       CALL SKIP(3)
       READ(*,*,ERR=360) CFORD(I)
380 CONTINUE
     CALL SKIP(24)
390 WRITE(*,400)
400 FORMAT(19X, 'WHAT IS THE VALUE OF THE CONSTANT, Bo ?')
     CALL SKIP(3)
     READ(*,*,ERR=390) CONST
     CALL SKIP(24)
```

```
READ(*,*,ERR=250) CIACT(8)
       CALL SKIP(24)
     ENDIF
     IF (NVAR.EQ.5) THEN
260
       WRITE(*,*)'
                                       WHAT IS THE VALUE OF B12'
       CALL SKIP(3)
       READ(*,*,ERR=260) CIACT(1)
       CALL SKIP(3)
270
       WRITE(*,*)'
                                      WHAT IS THE VALUE OF B13'
       CALL SKIP(3)
       READ(*,*,ERR=270) CIACT(2)
280
       WRITE(*,*)'
                                      WHAT IS THE VALUE OF B14'
       CALL SKIP(3)
       READ(*,*,ERR=280) CIACT(3)
290
                                      WHAT IS THE VALUE OF B15'
       WRITE(*,*)'
       CALL SKIP(3)
       READ(*,*,ERR=290) CIACT(4)
300
       WRITE(*,*)'
                                      WHAT IS THE VALUE OF B23'
       CALL SKIP(3)
       READ(*,*,ERR=300) CIACT(5)
310
                                      WHAT IS THE VALUE OF 324'
       WRITE(*,*)'
       CALL SKIP(3)
       READ(*,*,ERR=310) CIACT(6)
320
       WRITE(*,*)'
                                      WHAT IS THE VALUE OF $25'
       CALL SKIP(3)
       READ(*,*,ERR=320) CIACT(7)
330
       WRITE(*,*)'
                                      WHAT IS THE VALUE OF B34'
       CALL SKIP(3)
       READ(*,*,ERR=330) CIACT(8)
340
       WRITE(*,*)'
                                      WHAT IS THE VALUE OF B35'
       CALL SKIP(3)
       READ(*,*,ERR=340) CIACT(9)
350
       WRITE(*,*)'
                                      WHAT IS THE VALUE OF $45'
       CALL SKIP(3)
       READ(*,*,ERR=350) CIACT(10)
       CALL SKIP(24)
     ENDIF
     DO 380 I=1,NVAR
360
       WRITE(*,370) I
370
       FORMAT(19X, 'WHAT IS THE VALUE OF B', I1' ?')
       CALL SKIP(3)
       READ(*,*,ERR=360) CFORD(I)
380 CONTINUE
     CALL SKIP(24)
390 WRITE(*,400)
400 FORMAT (19X, 'WHAT IS THE VALUE OF THE CONSTANT, Bo ?')
     CALL SKIP(3)
     READ(*,*,ERR=390) CONST
     CALL SKIP(24)
```

```
WRITE EQUATION TO SCREEN FOR VERIFICATION
     WRITE(*,410)
410 FORMAT(//,27X,'SURFACE EQUATION IS:',//)
     IF(NVAR.EQ.1) THEN
       WRITE(*,420) COEF(1), CFORD(1), CONST
420
       FORMAT(3X, 'Y= ',F9.3, 'X1**2 + ',F9.3, 'X1 + ',F9.3,)
     ENDIF
     IF(NVAR.EQ.2) THEN
       WRITE(*,430) COEF(1),COEF(2),CIACT(1),CFORD(1),CFORD(2),CONST
       FORMAT(3X,'Y=',F10.3,'X1**2 +',F10.3,'X2**2 +',F10.3,
430
    + 'X1*X2 +',F10.3,'X1 ',//,4X,'+ ',F10.3,'X2 + ',F10.3,)
     ENDIF
     IF(NVAR.EQ.3) THEN
       WRITE(*,440) COEF(1),COEF(2),COEF(3),CIACT(1),CIACT(2),
    + CIACT(5), CFORD(1), CFORD(2), CFORD(3), CONST
     FORMAT(3X,'Y=',F10.3,'X1**2 +',F10.3,'X2**2 +',F10.3,
    + 'X3**2 +',F10.3,'X1*X2',//,4X,'+ ',F10.3,'X1*X3 + ',F10.3,
    + 'X2*X3 + ',F10.3,'X1 +',F10.3,'X2',//,4X,'+ ',F10.3,
            + ',F10.3)
    + 'X3
    ENDIF
     IF(NVAR.EQ.4) THEN
       WRITE(*,450) COEF(1),COEF(2),COEF(3),COEF(4),CIACT(1),
    + CIACT(2), CIACT(3), CIACT(5), CIACT(6), CIACT(8), CFORD(1),
    + CFORD(2), CFORD(3), CFORD(4), CONST
      FORMAT(3X,'Y= ',F10.3,'X1**2 + ',F10.3,'X2**2 + ',F10.3,
    + 'X3**2 +',F10.3,'X4**2',//,4X,'+ ',F10.3,'X1*X2 + ',F10.3,
    + 'X1*X3 + ',F10.3,'X1*X4 +',F10.3,'X2*X3',//,4X,'+ ',F10.3,
    + 'X2*X4 + ',F10.3,'X3*X4 + ',F10.3,'X1 +',F10.3,'X2 ',//,4X,
    + '+ ',F10.3,'X3 + ',F10.3,'X4 + ',F10.3)
    ENDIF
     IF(NVAR.EQ.5) THEN
      WRITE(*,460) COEF(1),COEF(2),COEF(3),COEF(4),COEF(5),CIACT(1),
    + CIACT(2), CIACT(3), CIACT(4), CIACT(5), CIACT(6),
    + CIACT(7), CIACT(8), CIACT(9), CIACT(10), CFORD(1), CFORD(2),
    + CFORD(3), CFORD(4), CFORD(5), CONST
460
     FORMAT(3X, 'Y= ',F10.3, 'X1**2 + ',F10.3, 'X2**2 + ',F10.3,'
    + 'X3**2 +',F10.3,'X4**2',//,4X,'+ ',F10.3,'X5**2 + ',F10.3,
    + 'X1*X2 + ',F10.3,'X1*X3 +',F10.3,'X1*X4',//,4X,'+ ',F10.3,
      'X1*X5 + ',F10.3,'X2*X3 + ',F10.3,'X2*X4
    + +',F10.3,'X2*X5',//,4X,
    + '+ ',F10.3,'X3*X4 + ',F10.3,'X3*X5 + ',F10.3,'X4*X5 +',F10.3,
    + 'X1',//,4X,'+ ',F10.3,'X2 + ',F10.3,'X3 + ',F10.3,
      ' X4
             +',F10.3,'X5 ',//,4X,'+ ',F10.3)
    ENDIF
    CALL SKIP(3)
470 WRITE(*,*)'
                                         IS THE EQUATION CORRECT?'
```

```
CALL SKIP(2)
     WRITE(*,*)'
                                                 "1"= CORRECT'
     WRITE(*,*)
     WRITE(*,*)'
                                                 "O"= WRONG'
     READ(*,*,ERR=470) IANS
     IF (IANS.EQ.0) GO TO 90
     IF (IANS.NE.1) GO TO 470
                   BEGIN SETTING UP MATRICES
     CALL SKIP(24)
     DO 480 K=1, NVAR
       RITE(K) = -CFORD(K)
480 CONTINUE
     DO 490 K=1,NVAR
       A(K,K) = COEF(K) *2
490 CONTINUE
     IF(NVAR.LT.2) GO TO 500
     A(1,2) = CIACT(1)
     A(2,1) = CIACT(1)
     IF(NVAR.LT.3) GO TO 500
     A(1,3) = CIACT(2)
     A(3,1) = CIACT(2)
     A(2,3) = CIACT(5)
     A(3,2) = CIACT(5)
     IF(NVAR.LT.4) GO TO 500
     A(1,4) = CIACT(3)
     A(4,1) = CIACT(3)
     A(2,4) = CIACT(6)
     A(4,2) = CIACT(6)
     A(3,4) = CIACT(8)
     A(4,3) = CIACT(6)
     IF(NVAR.LT.5) GO TO 500
     A(1,5) = CIACT(4)
     A(5,1) = CIACT(4)
     A(2,5) = CIACT(7)
     A(5,2) = CIACT(7)
     A(3,5) = CIACT(9)
     A(5,3) = CIACT(9)
     A(4,5) = CIACT(10)
     A(5,4) = CIACT(10)
500 CONTINUE
                   TAKE INVERSE OF MATRIX A = AINV
       THE CODE TO TAKE THE INVERSE USES THE GAUSS-JORDAN TECHNIQUE
       WITH PARTIAL PIVOTING. IT IS ADAPTED FROM:
         MICROCOMPUTERS IN NUMERICAL ANALYSIS
           BY LINDFIELD AND PENNY, 1987
```

```
DO 520 I=1,NVAR
         DO 510 J=1, NVAR
            AINV(I,J)=A(I,J)
510
         CONTINUE
520
     CONTINUE
     DO 590 K=1,NVAR
                   CHOOSE PIVOTS
         P=0
        DO 550 I=1, NVAR
            IF (K.EQ.1) GOTO 540
            DO 530 L=1,(K-1)
               IF (I.EQ.(R(L))) GOTO 550
530
            CONTINUE
540
            IF (DABS(AINV(I,K)).LE.DABS(P)) GOTO 550
            P=AINV(I,K)
            R(K)=I
550
        CONTINUE
         IF (P.EQ.O) THEN
            WRITE(*,*) 'ZERO PIVOT'
        ENDIF
        D=D*P
        PO=1/P
                   ELIMINATION PROCEDURE
        DO 560 J=1, NVAR
           M=R(K)
           AINV(M,J) = AINV(M,J) *PO
560
        CONTINUE
        AINV(M,K) = PO
        DO 580 I=1,NVAR
            IF (I.EQ.(R(K))) GOTO 580
           DO 570 J=1,NVAR
               IF (J.EQ.K) GOTO 570
              M=R(K)
              AINV(I,J) = AINV(I,J) - AINV(I,K) * AINV(M,J)
570
           CONTINUE
           AINV(I,K) = -AINV(I,K)*PO
580
        CONTINUE
590 CONTINUE
     DO 620 J=1, NVAR
        DO 600 I=1, NVAR
           M=R(I)
           T(I)=AINV(M,J)
600
        CONTINUE
        DO 610 I=1, NVAR
           AINV(I,J)=T(I)
610
       CONTINUE
```

```
620 CONTINUE
     DO 650 I=1, NVAR
         DO 630 J=1,NVAR
            M=R(J)
            T(M) = AINV(I,J)
630
         CONTINUE
        DO 640 J=1, NVAR
            AINV(I,J)=T(J)
640
         CONTINUE
650
     CONTINUE
     DO 660 K=1,NVAR
        M=R(K)
         T(M) = K
660 CONTINUE
     DO 680 I=1,NVAR
        DO 670 J=1, (NVAR-1)
            IF (T(J).LE.(T(J+1))) GOTO 670
            P=T(J)
            T(J)=T(J+1)
            T(J+1)=P
            D = -D
670
        CONTINUE
680
     CONTINUE
     IF (IDBUG.EQ.1) THEN
                   WRITE MATRIX
     DO 690 I=1,NVAR
           WRITE(*,*) (AINV(I,J),J=1,NVAR)
690
     CONTINUE
     WRITE(*,*)
     WRITE(*,*)'DETERMINANT= ',D
                   PRINT INVERSE OF MATRIX A= AINV
       WRITE(6,*)'
                       ----MATRIX AINV = INVERSE OF MATRIX A----'
       DO 700 I=1, NVAR
         WRITE(6,710) (AINV(I,J),J=1,NVAR)
700
       CONTINUE
710
       FORMAT(1X,5F20.5)
     ENDIF
                   SEE THAT MATRIX AINV*A = DIAGONAL MATRIX
720
    DO 750 I=1,NVAR
       DO 740 J=1,NVAR
         TEST(I,J)=0.0
         DO 730 K=1,NVAR
           TEST(I,J) = TEST(I,J) + A(I,K)*AINV(K,J)
           IF (TEST(I,J).LT.1.0E-06.AND.TEST(I,J).GT.-1.0E-06)
           TEST(I,J)=0.0
730
         CONTINUE
740
       CONTINUE
750 CONTINUE
```

```
IF(IDBUG.EQ.1) THEN
        WRITE(6, *)'
                        -----MATRIX A*AINV = MATRIX TEST----'
        DO 760 I=1,NVAR
          WRITE(6,770) (TEST(I,J),J=1,NVAR)
760
        CONTINUE
770
        FORMAT(1X,5F22.5)
      ENDIF
                   MULTIPLY MATRIX AINV*RITE(K) = MATRIX X(VAL MATRIX)
780 DO 800 I=1,NVAR
        X(I) = 0.0
        DO 790 K=1,NVAR
          X(I) = X(I) + AINV(I,K)*RITE(K)
790
       CONTINUE
800
     CONTINUE
     IF(IDBUG.EQ.1) THEN
                       ----MATRIX AINV*R(K) = MATRIX X(VALUE)----'
       WRITE(6,*)'
       DO 810 I=1,NVAR
         WRITE(6,820) I,X(I)
810
       CONTINUE
820
       FORMAT(11X, 'X', 12, '=', F16.5)
     ENDIF
                   DISPLAY RESULTS TO SCREEN
     WRITE(*,*)'
                                       CRITICAL ANALYSIS OF SURFACE'
     CALL SKIP(1)
     WRITE(*,*)'--VALUE OF INDEPENDENT VARIABLES AT OPTIMAL POINT--'
     CALL SKIP(1)
     DO 830 I=1,NVAR
       WRITE(*,840) I,X(I)
830 CONTINUE
840 FORMAT(11X,'X',I2,'=',F16.6,/)
     CALL SKIP(1)
                   DETERMINE VALUE OF Y AT OPTIMAL POINT
     DO 850 K=1, NVAR
       Y = COEF(K) * X(K) * * 2 + CFORD(K) * X(K) + Y
850 CONTINUE
     Y = Y + X(1) + X(2) + CIACT(1) + X(1) + X(3) + CIACT(2) +
          X(1)*X(4)*CIACT(3) +
          X(1)*X(5)*CIACT(4) + X(2)*X(3)*CIACT(5) +
          X(2)*X(4)*CIACT(6) +
          X(2)*X(5)*CIACT(7) + X(3)*X(4)*CIACT(8) +
          X(3)*X(5)*CIACT(9) +
          X(4)*X(5)*CIACT(10) + CONST
```

```
WRITE(*,860) Y
860 FORMAT(2X,'--VALUE OF RESPONSE VARIABLE AT OPTIMAL POINT--',/
    +/,12X,'Y =',F16.6,/)
870 WRITE(*,880)
880 FORMAT(2X,'--DO YOU WANT PRINTOUT OF THE RESULTS?',/)
                                       "1"= PRINT '
     WRITE(*,*)'
                                       "0"= NO'
     WRITE(*,*)'
     WRITE(*,*)
     READ(*,*,ERR=870) IANS
     IF (IANS.NE.O.AND.IANS.NE.1) GO TO 870
     IF (IANS.EQ.0) GO TO 990
     CALL SKIP(12)
     WRITE(*,*)'
                                        PRINTING RESULTS'
     CALL SKIP(12)
                                  CRITICAL ANALYSIS OF SURFACE'
     WRITE(6,*)'
     WRITE(6,*)
     WRITE(6,*)'NAME: ',NAME
     WRITE(6,*)
     WRITE(6,890) NSTUD
890 FORMAT(3X, 'SURFACE NUMBER= ', I2)
     WRITE(6,900)
900 FORMAT(/,15x,'SURFACE EQUATION IS:',/)
     IF(NVAR.EQ.1) THEN
       WRITE(6,910) COEF(1), CFORD(1), CONST
      FORMAT(3X, 'Y= ',F9.3, 'X1**2 + ',F9.3, 'X1 + ',F9.3,)
910
     ENDIF
     IF(NVAR.EQ.2) THEN
       WRITE(6,920) COEF(1),COEF(2),CIACT(1),CFORD(1),CFORD(2),CONST
920
       FORMAT(3X,'Y=',F10.3,'X1**2 +',F10.3,'X2**2 +',F10.3,
      'X1*X2 +',F10.3,'X1 ',//,4X,'+ ',F10.3,'X2
                                                    + ',F10.3,)
     ENDIF
     IF(NVAR.EQ.3) THEN
       WRITE(6,930)COEF(1),COEF(2),COEF(3),CIACT(1),CIACT(2),
    + CIACT(5), CFORD(1), CFORD(2), CFORD(3), CONST
      FORMAT(3X,'Y=',F10.3,'X1**2 + ',F10.3,'X2**2 + ',F10.3,
930
    + 'X3**2 +',F10.3,'X1*X2',//,4X,'+ ',F10.3,'X1*X3 + ',F10.3,
      'X2*X3 + ',F10.3,'X1
                              +',F10.3,'X2',//,4X,'+ ',F10.3,
    + 'X3
            + ',F10.3)
     ENDIF
     IF(NVAR.EQ.4) THEN
       WRITE(6,940)COEF(1),COEF(2),COEF(3),COEF(4),CIACT(1),CIACT(2),
    + CIACT(3), CIACT(5), CIACT(6), CIACT(8), CFORD(1), CFORD(2),
    + CFORD(3), CFORD(4), CONST
     FORMAT(3X,'Y=',F10.3,'X1**2 +',F10.3,'X2**2 +',F10.3,
    + 'X3**2 +',F10.3,'X4**2',//,4X,'+ ',F10.3,'X1*X2 + ',F10.3,
      'X1*X3 + ',F10.3,'X1*X4 +',F10.3,'X2*X3',//,4X,'+ ',F10.3,
    + 'X2*X4 + ',F10.3,'X3*X4 + ',F10.3,'X1 +',F10.3,'X2 ',//,4X,
```

```
+ '+ ',F10.3,'X3 + ',F10.3,'X4 + ',F10.3)
     ENDIF
     IF(NVAR.EQ.5) THEN
       WRITE(6,950)COEF(1),COEF(2),COEF(3),COEF(4),COEF(5),CIACT(1),
    + CIACT(2), CIACT(3), CIACT(4), CIACT(5), CIACT(6), CIACT(7),
    + CIACT(8), CIACT(9), CIACT(10), CFORD(1), CFORD(2), CFORD(3),
    + CFORD(4), CFORD(5), CONST
950
     FORMAT(3X,'Y= ',F10.3,'X1**2 + ',F10.3,'X2**2 + ',F10.3,
    + 'X3**2 +',F10.3,'X4**2',//,4X,'+ ',F10.3,'X5**2 + ',F10.3,
      'X1*X2 + ',F10.3,'X1*X3 +',F10.3,'X1*X4',//,4X,'+ ',F10.3,
    + 'X1*X5 + ',F10.3,'X2*X3 + ',F10.3,'X2*X4+'
      ,F10.3,'X2*X5',//,4X,
      '+ ',F10.3,'X3*X4 + ',F10.3,'X3*X5 + ',F10.3,'X4*X5 +',F10.3,
    + 'X1',//,4X,'+ ',F10.3,'X2 + ',F10.3,'X3 + ',F10.3,
             +',F10.3,'X5 ',//,4X,'+ ',F10.3)
     ENDIF
     WRITE(6,*)
     WRITE(6,*)' -- VALUE OF INDEPENDENT VARIABLES AT OPTIMAL POINT--'
     WRITE(6, *)
     DO 960 I=1,NVAR
       WRITE(6,970) I,X(I)
960 CONTINUE
970 FORMAT(11X, 'X', I2, '=', F16.6,/)
     WRITE(6,980) Y
980 FORMAT(3X,'--VALUE OF RESPONSE VARIABLE AT OPTIMAL POINT--',//,
    +13X,'Y=',F16.6,//)
     WRITE(6,*)
     WRITE(6,*)
990 CONTINUE
     CALL SKIP(24)
1000 WRITE(*,*) '
                                 DO YOU WANT DATA TO PLOT CONTOURS?'
     CALL SKIP(2)
     WRITE(*,*) '
                                                "1" = YES'
                                                "0" = NO'
     WRITE(*,*) '
     CALL SKIP(5)
     READ(*,*,ERR=1000) IANS
     IF (IANS.NE.O.AND.IANS.NE.1) GO TO 1000
     IF (IANS.EQ.0) GO TO 1290
                  PLOT CONTOURS
1010 CALL SKIP(24)
     WRITE(*,*)'
                                        CONTOUR ANALYSIS'
     CALL SKIP(5)
     DO 1020 I=1,5
       Z(I) = 0.0
       VMAX(I)=0.0
       VMIN(I)=0.0
       CONTOUR=0.0
```

```
DELTA(I)=0.0
1020 CONTINUE
     WRITE(*,*)'
                            WHAT VALUE CONTOUR DO YOU WANT TO PLOT?'
     CALL SKIP(7)
     READ(*,*) CONTOUR
     CALL SKIP(24)
     DO 1090 I=1,NVAR
1030
     WRITE(*,1040) I
1040 FORMAT(10X, 'WHAT IS THE MINIMUM VALUE OF X', I1)
       CALL SKIP(2)
       READ(*,*,ERR=1030) VMIN(I)
1050
       WRITE(*,1060) I
       FORMAT(10X, 'WHAT IS THE MAXIMUM VALUE OF X', I1)
1060
       CALL SKIP(2)
       READ(*,*,ERR=1050) VMAX(I)
1070
       WRITE(*,1080) I
1080
       FORMAT(10X, 'WHAT IS THE DELTA VALUE OF X', I1)
       CALL SKIP(2)
       READ(*,*,ERR=1070) DELTA(I)
       CALL SKIP(24)
1090 CONTINUE
1095 WRITE(*,*)'
                                    DO YOU WANT TO PRINT RESULTS?'
     CALL SKIP(2)
                              "1"= SEND RESULTS TO PRINTER AND SCREEN'
     WRITE(*,*)'
                              "O"= SCREEN ONLY'
     WRITE(*,*)'
     CALL SKIP(5)
     READ(*,*,ERR=1095) IPRINT
     IF(IPRINT.NE.O.AND.IPRINT.NE.1) GOTO 1095
     CALL SKIP(24)
     IF(IPRINT.EQ.1) THEN
                                            TURN ON PRINTER'
       WRITE(*,*)'
       CALL SKIP(8)
       CALL CONT
       CALL SKIP(13)
                               SENDING PLOTTING DATA TO PRINTER'
       WRITE(*,*)'
       CALL SKIP(12)
     ENDIF
       Z(1) = VMIN(1)
       Z(2) = VMIN(2)
       Z(3) = VMIN(3)
       Z(4) = VMIN(4)
       Z(5) = VMIN(5)
               SEND RESULTS TO SCREEN
     WRITE(*,1100)CONTOUR
     WRITE(*,*)
     WRITE(*,*)
     WRITE(*,1110) (VMIN(I), I=1, NVAR)
     WRITE(*,1120) (VMAX(I), I=1, NVAR)
     WRITE(*,1130) (DELTA(I), I=1, NVAR)
     WRITE(*,*)
     WRITE(*,1140)
```

```
SEND RESULTS TO PRINTER
     IF(IPRINT.EQ.1) THEN
       WRITE (6, 1100) CONTOUR
       WRITE(6,*)
       WRITE(6,*)
       WRITE(6,1110) (VMIN(I), I=1, NVAR)
       WRITE(6,1120) (VMAX(I), I=1, NVAR)
       WRITE(6,1130) (DELTA(I), I=1, NVAR)
       WRITE(6,*)
       WRITE(6,1140)
     ENDIF
1100 FORMAT(10X,' VALUES [+/-.01] TO PLOT CONTOUR = ',F9.2)
1110 FORMAT(2X, 'MIN VALUE - ',5(F13.3))
1120 FORMAT(2x,'MAX VALUE - ',5(F13.3))
1130 FORMAT(2X, 'DELTA VALUE-', 5(F13.3))
1140 FORMAT(11X,'Y',6X,'--INDEPENDENT VARIABLES-- ')
1150 Y=0.0D0
     DO 1160 K=1,NVAR
       Y=COEF(K)*Z(K)**2 + CFORD(K)*Z(K) + Y
1160 CONTINUE
    Y=Y+Z(1)*Z(2)*CIACT(1) + Z(1)*Z(3)*CIACT(2) + Z(1)*Z(4)*CIACT(3)
    + Z(1)*Z(5)*CIACT(4) + Z(2)*Z(3)*CIACT(5) + Z(2)*Z(4)*CIACT(6)
    + Z(2)*Z(5)*CIACT(7) + Z(3)*Z(4)*CIACT(8) + Z(3)*Z(5)*CIACT(9)
    + + Z(4)*Z(5)*CIACT(10) + CONST
     CHECK= Y-CONTOUR
     IF (CHECK.LE.O.O1.AND.CHECK.GE.-O.O1) THEN
       WRITE(*,1170) Y,(Z(I),I=1,NVAR)
       IF(IPRINT.EQ.1) WRITE(6,1170) Y,(Z(I), I=1, NVAR)
1170
      FORMAT(1X,F13.2,5F13.3)
     ENDIF
     IF (NVAR.LT.5) GO TO 1180
     IF(Z(5).GE.VMAX(5)) GO TO 1190
     Z(5)=Z(5)+DELTA(5)
     GO TO 1150
1180 IF (NVAR.LT.4) GO TO 1200
1190 Z(5)=VMIN(5)
     IF(Z(4).GE.VMAX(4)) GO TO 1210
     Z(4)=Z(4) + DELTA(4)
    GO TO 1150
1200 IF (NVAR.LT.3) GO TO 1220
1210 Z(4)=VMIN(4)
     IF (Z(3).GE.VMAX(3)) GO TO 1230
     Z(3)=Z(3) + DELTA(3)
    GO TO 1150
1220 IF (NVAR.LT.2) GO TO 1240
1230 Z(3)=VMIN(3)
     IF(Z(2).GE.VMAX(2)) GO TO 1250
     Z(2)=Z(2) + DELTA(2)
    GO TO 1150
1240 IF (NVAR.LT.1) GOTO 1260
```

```
1250 Z(2) = VMIN(2)
     IF (Z(1).GE.VMAX(1)) GO TO 1270
     Z(1)=Z(1) + DELTA(1)
     GO TO 1150
1260 WRITE(*,*) ' # VARIABLES LESS THAN 1--ERROR'
     STOP
1270 CALL CONT
1280 CALL SKIP(24)
     IF (IPRINT.EQ.1) WRITE(6,*)
     IF (IPRINT.EQ.1) WRITE(6,*)
                                DO YOU WANT TO PLOT ANOTHER CONTOUR?'
     WRITE(*,*)'
     CALL SKIP(2)
                                              "1" = YES'
     WRITE(*,*) '
     WRITE(*,*) '
                                              "0" = NO'
     CALL SKIP(5)
     READ(*,*,ERR=1280) IANS
     IF (IANS.NE.O.AND.IANS.NE.1) GO TO 1280
     IF (IANS.EQ.1) GO TO 1010
     CALL SKIP(24)
1290 CALL SKIP(24)
1300 WRITE(*,*)'
                             DO YOU WANT TO ANALYZE ANOTHER SURFACE?'
     CALL SKIP(2)
                                            "1" = YES'
     WRITE(*,*) '
     WRITE(*,*) '
                                            "0" = NO'
     CALL SKIP(5)
     READ(*,*,ERR=1300) IANS
     IF (IANS.NE.O.AND.IANS.NE.1) GO TO 1300
     IF (IANS.EQ.1) GO TO 50
     CALL SKIP(24)
     STOP
     CALL SKIP(24)
                  SUBROUTINE CONT- USED TO HALT OPERATIONS UNTIL USER
                  IS READY TO CONTINUE
     SUBROUTINE CONT
     CHARACTER*1 ANS, BLK
     DATA BLK/' '/
     ANS=BLK
     WRITE(*,10)
10
     FORMAT(/,'
                                     To continue, press RETURN key')
     READ(*,20) ANS
20
     FORMAT(A1)
     RETURN
     END
                  SUBROUTINE SKIP- SKIPS "N" LINES ON SCREEN DISPLAY
     SUBROUTINE SKIP(N)
```

DO 10 I=1,N
WRITE(*,*)''

CONTINUE
RETURN
END

*